
MACROS AND INLINE FUNCTIONS

Eliminating the call and return

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Parameterized macros and inline functions are used to solve the same kinds of problems. However, macros are an older mechanism inherited from the C programming language and have some problems. Inline functions are newer and more commonly used in C++.




“REGULAR” FUNCTIONS

f(a,b)

f(c,d)

f(x,y)
x

y

Presenter
Presentation Notes
When the compiler translates the body of a function into machine code, that code is stored in a specific location or address in main memory.




“REGULAR” FUNCTIONS

f(a,b)

f(c,d)

f(x,y)
x

y

Presenter
Presentation Notes
When a program makes a function call, the program control jumps to that address and begins to read and execute the code located there.




“REGULAR” FUNCTIONS

f(a,b)

f(c,d)

f(x,y)
x

y

Presenter
Presentation Notes
When the function’s machine code finishes or when a return statement is executed, control returns to the statement following the call.




“REGULAR” FUNCTIONS

f(a,b)

f(c,d)

f(x,y)
x

y

Presenter
Presentation Notes
Another call to the same function will cause control to jump to the same address as before.




“REGULAR” FUNCTIONS

f(a,b)

f(c,d)

f(x,y)
x

y



“REGULAR” FUNCTIONS

f(a,b)

f(c,d)

f(x,y)
x

y

Presenter
Presentation Notes
The overhead for doing the call or jump and the return is small; nevertheless, there is some overhead: it takes time to save the current address, to pass the arguments from the function call to the function, to jump to the function’s address, to return a value from the function, and to restore the saved address.




PARAMETERIZED MACROS:
THE GOOD

#define sqr(x) x * x

sqr(5)

5 * 5

sqr(fred)

fred * fred

#define f(x,y)
x

y

f(a,b)

f(c,d)

a

b

c

d

Compile

Presenter
Presentation Notes
Parameterized macros are one way of eliminating the overhead of a call and return, but they are appropriate in only very specialized situations. Macros are useful when it is conceptually convenient to give a name to a small set of operations. In this example, we create our own square function.
Macros are created with the #define preprocessor directive but also have parameters like a function. Macros are said to be expanded by the preprocessor. That means that wherever the code that looks like a function call is found in a program, that code is replaced by the body of the macro. The arguments in the call textually replace the parameters in the macro. Textual replacement means that the string of characters in the macro call replaces the corresponding string of characters in the macro definition.
The expansion takes place for each macro call found in a program. In the illustration, there are two macro calls. Each call is replaced by the macro body. The strings “a” and “b” replace the strings “x” and “y” in the first call and the strings “c” and “d” replace “x” and “y” in the second call.
The right side of the slide shows a macro at the top. Note that the spaces following “define” and the closing parenthesis are required, and that no spaces are allowed inside the macro name and parameter list. The full macro must be written on one line or each new line character must be escaped as shown in the text. Following the two calls are the resulting macro expansions.




MACRO PROBLEMS:
THE BAD

#define sqr(x) (x * x)

sqr(2 + 3)

(2 + 3 * 2 + 3)

#define sqr(x) ((x) * (x))

sqr(2 + 3)

((2 + 3) * (2 + 3))

Presenter
Presentation Notes
Unfortunately, the simple way that one string is replaced by another string has some problems. When we square 2+3, we expect the order of evaluation to first evaluate the expression 2+3 to produce 5, and then square the 5 to produce 25. But in this example, the string “2+3” replaces the single-character string “x”. The final macro expansion has a precedence error: 3*2 has a higher precedence and will take place before either addition. So, the order of evaluation is 3*2, which is 6, then 2 is added, giving 8, and finally 3 is added, giving a result of 11.
The macro can be fixed by adding three sets of parentheses: the red parentheses fix the precedence errors in the first example, while the blue parentheses allow the macro to appear in a larger, more complex expressions without causing additional precedence errors.




MACRO PROBLEMS:
THE UGLY

#define min(x,y) (((x) < (y)) ? (x) : (y))

min(a++, b++)

(((a++) < (b++)) ? (a++) : (b++))

Presenter
Presentation Notes
But there are some problems that cannot be fixed with any number of parentheses. This macro will work for many simple expressions but not all. Calling the macro with expressions including the auto increment operator produces the illustrated expansion. When the expanded code is executed, both “a” and “b” will be initially incremented by 1 as expected. But one of them will be incremented a second time.
Let’s suppose that the value stored in “a” is less than the value stored in “b”. The statement “a++ < b++” will increment the values stored in both variables. Depending on the result of the less than test, the conditional operator will evaluate one of the expressions appearing on either side of the colon. In this example, because we assumed that “a” was less than “b”, the expression “a++” is evaluated again, which increments “a” a second time. There is no way to solve this problem while using a macro.




INLINE FUNCTIONS

inline int min(int x, int y)

{

return (x < y) ? x : y;

}

min(a++, b++)

inline int f(int x,int y)
{

}

x

y

f(a,b)

f(c,d)

x

y

x

y

Compile

Presenter
Presentation Notes
Inline functions are a newer mechanism introduced by C++ that is similar to macros. Although inline functions are also expanded inline, that is, the call is replaced by the instructions defined in the body of the function, the expansion operation is done by the compiler component and not by the preprocessor. The function looks like any other function but with the addition of the “inline” keyword. Inline functions have two main advantages: the function is fully type checked, and second, the arguments in the call are fully evaluated before the function statements execute.
In the example call, “a++” and “b++” are evaluate, that is, the values in both variables are incremented, and it is the incremented values – not the string of characters – that are passed to the function. So, when the function executes, it is operating on the incremented values and does not perform the increment operation itself.
Inline functions are much more robust than are macros and will play an important role when C++ classes are introduced later.




INLINE RULES

• “inline” is a suggestion that the compiler may choose to ignore

• Is only appropriate for small functions

• Not appropriate when the address of a function is needed.

Presenter
Presentation Notes
There are a few simple concepts or rules to keep in mind when creating and using inline functions.
First, the inline keyword is only a suggestion, which the compiler may ignore; if the compiler does ignore the inline suggestion, it generates a “normal” function that involves a call and return.
Next, inline functions should be small to avoid code explosion. Each call to an inline function will duplicate the function’s body. So, calling large functions many times produces a needlessly large executable. Functions of up to three or four statements are appropriate, and in the past, some compilers did not allow loops in inline functions.
Finally, sometimes a program needs the address of a function, which is not possible with inline functions.



	Macros and Inline Functions
	“Regular” Functions
	“Regular” Functions
	“Regular” Functions
	“Regular” Functions
	“Regular” Functions
	“Regular” Functions
	Parameterized Macros:�The Good
	Macro Problems:�The Bad
	Macro Problems:�The Ugly
	Inline Functions
	Inline Rules

