UML CLASS DIAGRAMS

"The Unified Modeling Language (UML) is a graphical language
for visualizing, specifying, constructing, and documenting the

artifacts of a software-intensive system" (Booch, Rumbaugh, &
Jacobson, 2005, p. xiii)

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
"The Unified Modeling Language (UML) is a graphical language for visualizing, specifying, constructing, and documenting the artifacts of a software-intensive system." The UML currently consists of over a dozen diagrams, but we’ll only explore class diagrams this semester. A complete class diagram consists of class symbols connected by one of five relationships. This section introduces the UML class symbol and all its detail.

UML CLASS SYMBOL

Person

-name : string
-height : double
-weight : int
-instances : int

<<constructor>>

+Person(a_name :string, a_height : double, a_weight :int)
<<process>>

+pay_taxes() : bool

+catch_bus(direction : int) : void

+get_instances() : int

<<helper>>

-get_address() : Address

Class Name

Attributes

Operations

Presenter Notes
Presentation Notes
The UML represents a class as a rectangle that is often divided into three sections. The top section contains the class name, the middle section lists all the class attributes, and the bottom section lists all the class operations. The UML class symbol has been described as semantically rich, which means that a great deal of information is densely encoded in the symbol. Our tasks are first to learn how to read a UML class and then second, how to convert or translate that information into C++ code.
Stereotypes are optional labels that are enclosed by double angle brackets called ˌgi-lə-ˈmet or ˌgē-(y)ə-ˈmā (spelled guillemet). Not all UML diagramming tools support stereo types. The other features follow strict patterns that have a one-to-one correspondence with elements of most object-oriented programming languages.

UML ATTRIBUTES

- private

protected -counter : int
+ pubhc // \\

visibility attribute name attribute type
:type

Presenter Notes
Presentation Notes
We begin with the attributes in the middle of the UML class. The symbol on the far left indicates the visibility of the attribute: the minus sign denotes a private attribute, the sharp sign denotes a protected attribute, and the plus sign denotes a public attribute. To the right of the visibility indicator is the attribute name. Finally, at the far right is the data type of the attribute, which follows a colon.
This pattern is sufficiently well-formed that it represents a formal language syntax, which makes it possible to unambiguously translate UML to C++, called forward engineering, and C++ to UML, called reverse engineering.

UML OPERATIONS

- private :return type at end

protected Arguments follow the same pattern as
: attributes

+ public

Visiloility/+pow(baTe : double, expor‘ment : double) : double\
operation name argument name ‘ argument name return type

argument type argument type

Presenter Notes
Presentation Notes
The pattern for operations is a little more complex than for attributes but is still easy to use when you understand it. The visibility symbols are the same for operations as they are for attributes. The name of the operation follows the visibility indicators. Each argument is formed using the same pattern as the attributes: the argument name, a colon, and the argument type. Finally, the functions return type is at the far right, following a colon.

UML ATTRIBUTES TO
C++MEMBER VARIABLES

—-name : string private:

string name;

—instances : int private:

static int instances;

Presenter Notes
Presentation Notes
This example illustrates how UML attributes are translated into C++ member variables. Attributes are typically private and so are placed in a private section in the C++ class. But take notice of two points: First, while attributes are typically private, it is possible to have non-private attributes and you must look at the visibility indicators rather than just assuming the attributes are private. Second, the private label is not repeated for each attribute – it’s shown here for each variable just to emphasize that the minus sign means to place the attribute in the private section of the class.
In the last example, the attribute is underlined. Any feature that is underlined in the UML is translated into C++ by adding the “static” keyword to the variable declaration. Static features are covered later.

CONSTRUCTORS:
UML AND C++

Constructors build new objects
Have the same name as the class

Do not have a return type

+Person(a name : string, a height : double, a welght : int)

public:
Person(string a name, double a height, int a weight);

Presenter Notes
Presentation Notes
Just as attributes may be translated directly into C++, so may operations. One very important operation is called a constructor. Constructors are important because they construct or build new objects. There are two notational details that set constructors apart from other operations: First, constructors always have the same name, including capitalization, as the class in which they are declared. Second, constructors never have a return type, not even void.
This example assumes that we have a class named person. The UML constructor indicates that the operation is public and has three arguments, a string, a double, and an int. To convert the UML operation into a C++ member function, simply reverse the name and type for each argument, and discard the colon. Don’t forget the semicolon at the end of the prototype. One naming convention adds an “a_” to the argument name to indicate that the variable name is an argument. We’ll see later why this is useful.

UML OPERATIONS TO
C++ MEMBER FUNCTIONS

+tpay taxes () : bool public:
bool pay taxes();
tcatch bus(direction : int) : void public:
volid catch bus(int direction);

—get address () : Address private:

static Address get address();

Presenter Notes
Presentation Notes
More general operations and functions follow the same pattern, but both have return types and the names are not constrained. To translate UML operations into C++ member functions, look at the visibility indicator and place the function following an appropriate label in the C++ class. Then, move the return type from the far right to the left while discarding the colon. Copy the operation name to the function name. Finally, copy the operation arguments to the C++ function while reversing the order of the name and the type.
In this example, the last function is private. It is more common to have private operations than it is to have public attributes. In some cases, two functions can share code, which is conveniently implemented as a private function. Making the function private prevents outside objects from accessing the code while making it unnecessary to duplicate the code in the sharing functions.

EXAMPLE:

TRANSLATING UMLTO C++

Time

{

-hours : int
-minutes : int
-seconds :int

+Time(h :int, m :int, s : int)
+Time(s : int)
+add(t2: Time) : Time
+add(t2 : Time*) : Time*
+print() : void

+read() : void

class Time

private:

int hours;
int minutes;
int seconds;

public:

Time () ;
Time (int h, int m, int
Time (int s);

Time
Time*
voild
voild

add (Time t2);
add (Time* t2);
print () ;
read() ;

Presenter Notes
Presentation Notes
Finally, we see a complete example of a UML class and the corresponding C++ class. The example illustrates a typical situation where all attributes are private and all operations are public. The C++ class represents this situation with just two labeled sections, one for the private member variables and one for the public member functions.
In this example, all attributes and member variables are the same type, but this is neither a requirement nor is it typical. The first three operations are constructors, which are translated into three overloaded C++ functions. Overloaded constructors must follow the standard rules for overloading functions: the argument list must be unique.

	UML Class Diagrams
	UML Class Symbol
	UML Attributes
	UML Operations
	UML Attributes To�C++Member variables
	Constructors:�UML and C++
	UML Operations To�C++ Member Functions
	Example:�Translating UML to C++

