
ACCESS FUNCTIONS

Accessing object data

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Strong encapsulation requires that we hide all class features that are not part of the public interface, which we do most often with the private keyword. But sometimes, a client of our class, that is, code that uses our class, needs to access some of the private data stored in an object. Access functions are a way of allowing that access while maintaining encapsulation.




ACCESS FUNCTIONS:
GETTERS AND SETTERS

• Sometimes a client needs to access some data or property of an object

• Access functions are the preferred object-oriented solution

• Imagine that a class has a member variable: string name;

• Accessor or getter functions return the values stored in member data

• string getName() or string get_name()

• Mutator or setter functions change member data

• void setName(string n) or void set_name(string n)

Presenter Notes
Presentation Notes
There are two kinds of access functions.
Accessor or getter functions allow clients to “see” the private data stored in a class without allowing the client to change that data. They do this by returning a copy of the value stored in a member variable, or they return a constant reference or a constant pointer to the variable. The name of a getter function is usually formed by adding the prefix “get” to the name of the variable whose value the function returns. The return type of getter functions is the same as the data type of the returned member variable.
Mutator or setter functions allow the client to change the value stored in an object. Although setter functions allow clients to change an object, they permit the class designer to maintain some control over the stored data by performing validation, conversion, and formatting operations. The name of setter functions is usually formed by adding the prefix “set” to the name of the variable whose value the function sets. The argument data type is the same as the data type of the variable that is being set.




ACCESS FUNCTIONS EXAMPLE

class Person
{

private:
string name;
int age;

public:
string getName()
{

return name;
}

void setAge(int a_age)
{

if (age > 0 && age < 115)
age = a_age;

}
};

Presenter Notes
Presentation Notes
The example illustrates a simple class that has two member variables and two corresponding access functions. The name of the getter function is derived from the name of the member variable and the return type matches the member variable type. Likewise, the name of the setter function is derived from the member variable name and the argument type generally matches the member variable type or converts the argument type to the member type. The setter also performs some simple validation before changing the target object.




ACCESSOR FUNCTIONS ADVANTAGES

• Designer chooses which functions to provide

• Select what data is exposed and what data remains hidden

• Control the direction of data flow

• Implement data validation and conversion

• “Feb 31” is invalid

• Convert 1505741120000 to 2017/09/18 13:25:20 GMT

• Convert “Dec. 25, 1960” to “1960/12/25”

• Separate the interface from the implementation

• Can return a property or conceptual value

Presenter Notes
Presentation Notes
Accessor functions permit clients to access private class data while allowing the class designer to maintain control over the private data stored in each instance of the class. First, the designer chooses which variables will have access functions: all, some, or none. Second, the designer chooses which direction to let data flow: into the object with a setter, out of the object with a getter, or both. In the case of setter functions, the designer can choose what values to accept, convert from one data type to another, or reformat the input to match a standard format.
Access functions separate the interface from the implementation. The interface is the service that a client sees and the implementation is how the class designer provides the service. The separation allows a designer to modify a class without disrupting the service to a client.




STACK EXAMPLE

sp

0
1
2
3

Presenter Notes
Presentation Notes
An example makes it much easier to understand how separating the interface from the implementation allows a class designer to modify a class. Suppose that a class designer creates a stack class based on an array. A stack based on an array requires an index variable to indicate the top of the stack. In this example, the index is named sp, for stack pointer. The three array elements, 0, 1, and 2 are filled, sp points to the next available element, which is element 3. This also makes the value stored in sp the size of the stack. A client may need to know the size of the stack and the class designer could make that information available by making sp public. Doing this would also allow the client to change the value stored in sp so that it no longer pointed to the top of the stack. But sp is also part of the implementation and making sp public prevents the designer from altering the implementation.
Suppose that the designer wishes to change the stack so that it is based on a linked list rather than an array. The size of the list is no longer the stack pointer, and in fact, the linked list implementation doesn’t even have a stack pointer. But with either implementation, the designer could define a getter function named get_size. In the stack implementation, the getter returns sp, but in the linked list implementation, the getter counts the number of nodes in the list and returns the count. The function signature forms the public interface while the body, hidden from the client, forms the implementation. The body is free to change while the signature remains stable.



	Access Functions
	Access Functions:�getters and Setters
	Access Functions Example
	Accessor Functions Advantages
	Stack Example

