THE const KEYWORD

Used With Classes

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
We used the const keyword in previous chapters to create symbolic or named constants and to prevent functions from changing the value of their arguments. So, applying “const” to classes will be a review to some extent, but it will also introduce some new syntax. The following discussion assumes that you recall and understand pass-by-value, pass-by-pointer, and pass-by-reference. If you are unclear about any of these, you should review them in chapter 6 before continuing.



PASS-BY-REFERENCE

b.functionl (£f); void functionl (const Foo& a f);



Presenter Notes
Presentation Notes
When we pass an object to a function by reference, the compiler temporarily gives the object a second name or alias. One name, f in this example, is defined in the scope of the function call, while the second name or alias, a_f, is defined in the function’s scope. Any change made to the object using the function-scope name will persist after the function ends.
Adding the const keyword prevents the function from changing the object. Any attempt to change the object in the body of the function will result in a compile-time error.



PASS-BY-POINTER

b.function2 (&f) ; void functionZ (const Foo* a f);

b.function3 (&f) ; void function3 (Foo* const a f);

b.functiond (&%) ; volid function4 (const Foo* const a f);
f a_f



Presenter Notes
Presentation Notes
Like pass-by-reference, pass-by-pointer also allows a function to change an object passed to it. But, unlike pass-by-reference, pass-by-pointer creates a second, pointer variable - notice the use of the address-of operator in the function calls. The second variable complicates using the “const” keyword to prevent the function from changing the object.
Where “const” is placed in the function header determines which variable is held constant. The first example, based on function2, is the most common and makes the object unchangeable. The second example or function3 makes the pointer unchangeable – that is, the address stored in a_f cannot change during the current function call. If the programmer wishes to make both variables constant, then the “const” keyword must appear in both locations.



PASS-BY-POINTER

b.function2 (&f) ; void functionZ (Foo const* a f);

b.function3 (&f) ; void function3 (Foo* const a f);

b.functiond (&%) ; volid function4 (Foo const* const a f);
f a_f



Presenter Notes
Presentation Notes
When locating “const” in the header, the focus is really on the asterisk that denotes a pointer argument. To protect the object, “const” must come before the asterisk. So, the placement shown here also works but is much less common.



IMPLICIT / “THIS” OBJECT:
PASS BY POINTER

b.function? () ; volid functionZ () const;

b this



Presenter Notes
Presentation Notes
Recall that member functions must always be bound to an object when they run, which, in this example, means that function2 is bound to object b. The function call automatically passes the address of the bound object, b, to the pre-defined variable named “this.” So, calling a member function that is bound to an object is just a special case of pass-by-pointer, which implies that the function can make changes to the bound or calling object. Again, the “const” keyword can prevent the function from changing the bound object. However, where “const” is placed may be a little unexpected – it is placed after the closing parenthesis of the argument list. If the body of the function is defined inside the class, then the body follows the “const” keyword.



GETTERS: JAVA

int height;
double weight;

String name;

Other class references
implements cloneable

clone

int getHeight ()
{

return height;

String getName ()
{

return name;



Presenter Notes
Presentation Notes
Getter functions are an integral part of object-oriented programming. They allow a client program to access the values stored in an object’s member variables. But programmers must take care to maintain an object’s encapsulation when writing getter functions. First, let’s see how Java solves this problem.
Begin by assuming that a Java class has three instance variables: height, weight, and name. The first two are simple or fundamental data types, so getHeight illustrates a typical getter. Simple types like int are always returned by value, so even if the client changes the returned value, the change does affect the value stored in the object.
But what about name, which is an instance of the String class? Java programs always work with objects through a reference, which is very much like a C++ pointer. So, when getName returns name, it really returns a pointer to the String stored in the object. However, Java Strings are immutable, which just means that programs can’t change them – any Java operation that “looks” like it’s changing a String is really creating a new String.
In general, a Java getter function should copy any object that it returns. Copying an object in Java is called cloning and is a two-step process: first, implement the cloneable interface then call the clone method.



GETTERS: C++

int height; int getHeight ()

double weight; {

return height;

string name; }
Other class pointers and references string getName ()
const return {

return name;


Presenter Notes
Presentation Notes
Let’s compare C++ getters to Java beginning with the same member variables: height, weight, and name. Simple or fundamental types like int and double are returned by value in both languages, which automatically preserves object encapsulation. In C++ the getName function returns an instance of the string class – but it also does a return by value, which automatically copies the string, again preserving encapsulation. But for other members that are pointers or references, we need to do a const return.



{

}

CONST RETURN

GETTERS:

CLASS

char name[100];

const char* get name ()

return name;

CLIENT

const char* student = p.get name();

char const* student = p.get name();


Presenter Notes
Presentation Notes
But suppose that we make the name a C-string? Recall that arrays in general and C-strings specifically are always passed and returned by pointer. Furthermore, C-strings are NOT immutable – they can be changed. But we can still preserve the object’s encapsulation by making the returned data constant by adding the “const” keyword. Notice that we must also use the “const” keyword when we define a variable in which we store the returned pointer or address. It’s most common to put const at the beginning of the definition, but it can also appear between the data type and the asterisk.
If we put “const” after the asterisk – that is between the asterisk and variable name – then it’s the pointer or address that is constant and not the data, which is not what is typically desired.



SYMBOLIC CLASS CONSTANTS

DEFINING USING
class foo volid foo::function ()
{ {

public: ... N ...
const static int N = 10; }
vold function () ;
} i void applicationl ()

{
. foo::N ...

}


Presenter Notes
Presentation Notes
Finally, we can use the const keyword to make symbolic or named constants that have class scope by combining the “const” and “static” keywords. The “static” keyword is detailed in the next section, including an actual example. The name of the symbolic constant can be used in member functions without further qualification, and it can be used in other functions by stating the class name, the scope resolution operator, and constant name. By defining the constants in class scope, the constant names can be reused in multiple classes without conflict.



	The const keyword
	Pass-by-reference
	Pass-by-pointer
	Pass-by-pointer
	Implicit / “this” object:�Pass by pointer
	Getters: Java
	Getters: C++
	getters:�const return
	Symbolic Class Constants

