CS 3230 - Summer 2013 Syllabus
Internet Multimedia Services and Applications Using Java

Instructor: Aaron Brough
Email: aaronbrough@mail.weber.edu
Location: SLCC Meadowbrook
Time: 7:30 – 9:00 pm. Tues & Thurs

Course Objectives:
The text for the course is Core Java, which is an appropriate description of what you will learn. At the conclusion of the course, you will understand the “core” of the Java language. You will learn in this class those “core” features of the Java language that are used regardless of what area of specialized Java programming you may wish to pursue. This includes programming within the object model and advanced features such as graphics, GUIs, networking, and multithreading. Each student is expected to maintain high standards of honesty and ethical behavior. Each assignment must represent the student’s own, best effort. You are encouraged to study together and to work together on the labs. This means that it is okay to discuss algorithms, syntax, and Java in general with others. You may also get ideas and code fragments from books. At the conclusion of the course you should:

1. Understand the fundamental or core concepts of the Java language; specifically, those parts of the language which are generally used regardless of the problem domain
2. Understand the Object-Oriented model and its relationship to and implementation in the Java programming language; specifically, you will understand the components and concepts:
 a. classes, objects, and instantiation
 b. relationships: inheritance, association, aggregation, composition, and dependency
 c. attributes and methods, and their relationship to encapsulation and abstraction
 d. abstract classes
 e. polymorphism
3. Understand the physical organization of the Java language system and the relationship of this organization
with the Java Development Kit (JDK), used to create Java programs:
 a. .java and .class files
 b. the Java Virtual Machine (JVM) and how it relates to applications and to applets
 c. how multi-class programs are assembled into programs (including executable JAR files)
4. Understand and use interfaces and inner classes
5. Understand and use Java’s event delegation model (i.e., be able to create programs based on the event drive programming model)
6. Be able to write graphical programs
7. Be able to write Graphical User Interface (GUI) programs
 a. AWT
 b. Swing
 c. Applications
 d. Applets
 e. Java’s GUI event interfaces
8. Understand and be able to use event handling, including Java’s event classes
9. Understand and be able to use exception handling
10. Understand and be able to use Java’s input and output philosophy and classes

Students with Disabilities: Any student requiring accommodations or services due to a disability must contact Services for Students with Disabilities (SSD) in room 181 of the Student Services Center on the Weber State Ogden campus. SSD can also arrange to provide course materials (including this syllabus) in alternative formats if necessary.

Allocated Time: You should anticipate spending two to three hours of study per week for each credit hour of a university course. Computer and programming classes typically require time in the upper range.

Class Format: Class will consist of some lecture and discussion and in-class code examples. Questions and comments during class time are encouraged. It is expected that students will have read the covered chapters prior to the class on the topic. Normally, time will be set aside each week as work and group time so that you can complete assignments and projects. The schedule is subject to change to meet the needs of the class. Note that 100% attendance is not required but recommended.
 • Project work is defined as a large project to be completed by yourself or in a team of 2-3 students.
 • Assignments work is individual work.
Lecture will occur during the first half of the semester with the second half devoted entirely to your final project. Time management of the students each week is critical to meet and complete projects deadlines.

Honesty & Fair use:

CS Department policy dictates that any verifiable evidence of student academic cheating, as defined and determined by the instructor, will result in: 1) an automatic failing grade for class and 2) a report to the Dean of Students that will include the student’s name and a description of the student’s dishonest conduct.

Each student is expected to maintain high standards of honesty and ethical behavior. Each assignment must represent the student’s own, best effort. You are encouraged to study together and to work together on the labs. This means that it is okay to discuss algorithms, syntax, and Java in general with others. You may also get ideas and code fragments from books or from the Internet. However, you may not copy whole methods, classes, files, or programs from someone else, from a book or from the Internet; nor may you exchange or share code in any electronic format - including code from previous semesters.

Assignments & Reading

Each student is expected to read the assigned chapters from the required text book. Assignment problems both individual and group projects are to be submitted for grading on the date specified.

Quizzes will be given to assess chapter reading.

Grading:

- Quizzes: 10 points each
- Labs/Class exercise: 50 points each
- Assignments: 100 points each
- Mid-term Project: 500 points
- Final Project: 500 points

Final Project:

There will be a Final Project in place of a final exam.

<table>
<thead>
<tr>
<th>Letter Grades</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>>= A</td>
</tr>
<tr>
<td>89% - 86%</td>
<td>= A-</td>
</tr>
<tr>
<td>85% - 82%</td>
<td>= B</td>
</tr>
<tr>
<td>81% - 78%</td>
<td>= B-</td>
</tr>
<tr>
<td>77% - 74%</td>
<td>= C+</td>
</tr>
<tr>
<td>73% - 62%</td>
<td>= C</td>
</tr>
<tr>
<td>61%</td>
<td><= E</td>
</tr>
</tbody>
</table>