
TERMINOLOGY

Building A Common Vocabulary

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Every discipline, including computer science, has its own specialized terminology that helps practitioners communicate quickly and efficiently. It's important for you to learn that terminology. Throughout this course you must focus on new terms or on the special meanings given to common words or phrases.



STATEMENT

• One complete instruction to the computer to do something

• Like a sentence in a natural language

• Terminated by a semicolon

• Examples

• x = a + b;

• y = sqrt(2);

• cout << x << endl;

Presenter
Presentation Notes
A statement is one complete computer instruction. It's similar to a sentence in a natural language - it represents a complete action, but it must be seen in the context of the surrounding statements to be completely understood. An assignment statement is a common example: it calculates a value on the right side of the assignment operator and then stores the result in the variable on the left side. An output statement displays the contents of a variable on the console (this strange statement will be fully explained shortly). Notice that every statement is terminated by a semicolon.



EXPRESSION

• A fragment of code that represents or evaluates to a value

• Expression values are temporary, lasting only while the statement runs

• Expressions are part of a statement: can’t stand alone and don’t end with a 
semicolon

• Simple expressions

• Constant: 5

• Variable: counter

• Function call: sqrt(5)

Presenter
Presentation Notes
An expression is a fragment of code that represents a value. The computer must evaluate the expression to obtain the value, meaning it carries out the calculations or operations specified in the expression. Because the computer evaluates the expression each time the value is needed, expression values are temporary, and the computer discards them when the statement ends. Expressions are just a part of a statement. So, they can’t stand alone, which means that, by themselves, they won’t compile. It also means that they don’t end with a semicolon. 
 
A constant is a simple expression; in this example the constant "5" is an expression that represents the numeric value 5. A variable is also a simple expression that represents the value currently stored in the variable.
 
Any function that has a non-void return type can also be an expression: the expression value is the value that the function calculates and returns when it is called. In this example, the sqrt function calculates and returns the square root of 5, which is the expression value.



COMPLEX EXPRESSIONS

• Expressions are formed recursively:

• E is an expression, so

• Operation(E) is an expression

• Complex expressions are formed by combining simple expressions

• -n

• counter + 5

• angle < 180

• sqrt(pow(a,2) + pow(b,2))

Presenter
Presentation Notes
Expressions are formed recursively, which means that simple expressions can be combined to form complex expressions. So, if E is an expression, some operation on E is also an expression.
 
If n is a variable, then -n is the value stored in n but with its sign reversed. For example, if n is currently 10, then -n evaluates to -10. Notice that together, the minus and the n form an expression, but the operation doesn’t change the value stored in n.
 
Arithmetic operations are common examples: plus, minus, times, and divide are all familiar examples. Expressions can also produce non-numeric values. For example, angle < 180 is said to be Boolean-valued, which means that the expression evaluates to either true or false.
 
Complex expressions are evaluated in steps whose sequence depends on the structure of the expression and on some rules introduced in the next chapter. The pow function raises a number to a power. In this example pow(a,2) raises a to the second power; that is, it calculates a-squared.
 
If, for simplicity, we ignore the simple steps of evaluating the variables a and b, we can see that the complex statement is evaluated in four steps: First, the power function calculates a-squared. Second, it calculates b-squared. The third step sums the two squares. In the fourth and final step, the square root function calculates the square root of the sum.



DECLARATION

• Introduces a name or identifier (i.e., a symbol) to the compiler

• Compiler puts the name in the symbol table

• Symbol table is used to generate code

Presenter
Presentation Notes
A declaration is a statement that introduces a name or identifier to the compiler. Variables, functions, classes, etc. can all be named and each name forms a new symbol in the program. When the compiler "sees" a new symbol it places that symbol in a temporary structure called "the symbol table." The compiler uses the information in the symbol table to generate machine code and then the symbol table is discarded when the compiler is finished.



DEFINITION

• Allocates memory

• To store or hold a variable

• To hold the machine instructions for a function

• In C++, variables and functions must be defined once before they can be used, 
but may be declared multiple times

• Sometimes code can be both a declaration and a definition

• Variables may be initialized when defined but it is not required
• int counter;

• int counter = 100;

Presenter
Presentation Notes
The distinction between a definition and a declaration is very subtle, and sometimes a single statement serves as both. A declaration provides information that the compiler uses to generate code. A definition causes the compiler to allocate memory to hold whatever part of the program is being defined. If it is a variable that is being defined, the compiler generates code to allocate memory to hold the contents of that variable. If it is a function that is being defined, the compiler generates machine code from the function statements and that machine code must be stored in memory while the function runs.
 
Every variable and every function must have exactly one definition in the program. Variables and functions must be declared at least once but may be declared any number of times so long as the declarations are consistent (i.e., all the declarations are the same). If a variable or function definition is the first time that the compiler "sees" the variable or function name, then the definition is also a declaration - the name is entered into the symbol table before memory allocation and code generation take place.



MULTI-FILE PROGRAMS

• Variables may be defined in one file and used in another

• Must declare the variable in the using file

• int counter; // definition

• extern int counter; // declaration

Presenter
Presentation Notes
There is no need to have a variable declaration that is distinct from a definition in a single-file program. But there is occasionally such a need when a program spans two or more files. If a variable is defined in one file and used in a second file, then it must be declared in the second, using file, which is done by adding the "extern" keyword. Note that this only applies to global variables (variables that are outside of all functions and classes). Global variables are error or prone and their use is not recommended, which means that stand-alone variable declarations are not common. We'll cover function declarations later in the functions chapter.


	Terminology
	Statement
	Expression
	Complex Expressions
	Declaration
	Definition
	Multi-File Programs

