
Class Relationship Summary

Categories
Properties

Inheritance
(Generalization) Association Aggregation Composition Dependency

(Using, Delegation)

Semantics (meaning)

• Is a relationship
• A kind of relationship
• Subclass inherits

attributes & operations
from superclass

• Has a that reads well in
both directions:

• Has a relationship
• Part of relationship
• Build a complex whole-

object from simple part-
objects

• Has a relationship
• Part of relationship
• Build a complex whole-

object from simple part-
objects

• One object depends on
another object

• One object uses the
services of another

• An object delegates
some responsibility to
another

Example A student is a person. A class has a teacher.
A teacher has a class.

A car has an engine.
An engine is part of a car.

A car has an engine.
An engine is part of a car.

A calculator depends on /
delegates to a listener.
A button uses a listener.

Class Roles
Parent & Child
Superclass & Subclass
Base & Derived

Peer Whole & Part Whole & Part
Dependent/Independent
Client/Server
User/Supplier

Directionality
(Navigation/Knowledge)

Unidirectional
(Child to Parent) Bidirectional Unidirectional

(Whole to Part)
Unidirectional
(Whole to Part)

Unidirectional
(Client to Supplier)

Object Binding Strong Weak Weak Strong Temporary or Transient

Lifetimes Coincident Independent Independent Coincident Independent

Sharing Exclusive Shareable Shareable Exclusive Shared

Implementation : public 2 pointer variables 1 pointer variable 1 non-pointer variable 1 local variable

Variable(s) N/A Class scope both classes Class scope whole class Class scope whole class Client function local var

Code Pattern

class A {};

class B : public A
{
 ...
};

class B
{ A* a; };

class A
{ B* b; };

class B {};

class A
{
B* b;

};

class B {};

class A
{
B b;

};

class A
{
public:
__func(B b) {}
__func(B* b) {}
__func(B& b) {}

};

UML Class Relationship
Symbol

Relationship Table Legend: Properties and Values

Property Values Meaning

Semantics1

Is a, Kind of One object is another object (possible to substitute one object for another). One object is a (special) kind of another
(general) object.

Has a, Part of One object has another object as a part. One object is a part of another object. One object contains another object.

Depends on One object depends on (uses, delegates some responsibility to) another object.

Directionality2
Bidirectional Messages are exchanged in both directions (i.e., both objects may send a message). Possible to go from either object to the

other. Both objects "know" about each other.

Unidirectional Messages are sent in only one direction (i.e., only one object sends a message). Possible to go from one object to another
but not in the opposite direction. Only one object "knows" about the other.

Binding3

Strong/Tight
Lifetime (Coincident) Object lifetimes are the same: they are created and destroyed at the same time

Sharing (Exclusive) Objects form an exclusive relationship that does not permit sharing of the parent or part object

Weak/Loose
Lifetime (Independent) Object lifetimes may be different: they may be created and destroyed when convenient (at the same or at

different times).

Sharing (Shareable) Whole objects may share their pars with other objects in the program/design.

Temporary/
Transient

Lifetime (Independent) Object lifetimes are different: The client passes an existing object (itself or one of its parts) as an argument
to a supplier function's parameter, which the function destroys when it returns.

Sharing (Shareable) Parameters passed by pointer or reference are shared; parameters passed by value or non-parameter, local
variables are not.

1. What the relationship means in the problem domain (i.e., the “real world”).
2. The direction that messages are exchanged between objects. Given one object in the relationship, is it possible to navigate to or access the other object.
3. Binding strength summarizes two properties: First, the lifetimes of related objects are the same (or coincident) if the program creates them at the same time, establishes the

relationship then, and destroys them at the same time; otherwise, the lifetimes are different (or independent). Second, the part object is shareable if two or more objects can
"have it" simultaneously; otherwise, it is held exclusively by one object.

