
USING AGGREGATION:
WHOLE-PART WITH POINTERS

The whole sends messages to (i.e., calls functions in) its parts

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Aggregation and composition are both whole-part relationships and, therefore, quite similar. Once a program establishes an aggregation relationship between two classes, it uses the relationship similarly to composition. Only a slight change in syntax, accommodating aggregation’s pointer implementation, is needed. Reinforcing the similarities between the two relationships, we revisit the composition examples, altered to illustrate aggregation.

USING SIMPLE
AGGREGATION

class string
{

public:
int length() { ... }
int find() { ... }
int rfind() { ... }

};

class PalNumber
{

private:
string* pal;

public:
bool isPal()
{

pal->length() ...
pal->find() ...
pal->rfind() ...

}
};

string

+ length() : int
+ find() : int
+ rfind() : int

PalNumber

+ isPal() : bool

 pal

Presenter Notes
Presentation Notes
The PalNumber class must determine if a sequence of digits forms a palindrome. The class manages the digits as an aggregated string named pal, implemented with a pointer. PalNumber uses the string by sending it messages, that is, by calling some of its member functions. The arrow operator replaces the dot operator appearing in the composition example.

INHERITANCE & AGGREGATION(1)

Student
- gpa : double
+ Student(n : string, g : double, c : string, s : string)
+ display() : void

Address
- city : string
- state : string
+ Address(c : string, s : string)
+ display() : void

Person
- name : string
+ Person(n : string, c : string, s : string)
+ display() : void

Presenter Notes
Presentation Notes
Again, we add a display function to demonstrate using aggregation in programs with multiple classes and relationships. The Student display function calls the Person display, which calls the Address display. You can generalize the calling syntax to functions more complex than display.

USING AGGREGATION
WITH INHERITANCE (1)

class Address
{

public:
void display()
{

cout << city << ", " << endl;
}

};

class Person
{

private:
Address* addr;

public:
void display()
{

cout << name << end;
if (addr != nullptr)

addr->display();
}

};

class Student : public Person
{

public:
void display()
{

Person::display();
cout << gpa << endl;

}
}

Presenter Notes
Presentation Notes
Only two changes to the composition version, reflecting the switch to pointers, are needed to illustrate the aggregation portion of the example.
The chain of display function calls begins when the program calls the Student’s display function. The Student display function calls the Person display using the inheritance relationship between the two classes. Then, the Person display function calls the address display. Equivalently, we can say that a Student object sends the display message to a Person object, which sends a display message to an Address object.

INHERITANCE & AGGREGATION(2)

Owner
- account : int
+ Owner(n : string, a : int, pn : string, v : string)
+ display() : void

Pet
- name : string
- vaccinations : string
+ Address(pn : string, v : string)
+ display() : void

Person
- name : string
+ Person(n : string)
+ display() : void

Presenter Notes
Presentation Notes
The final example moves the aggregation relationship from the superclass to the subclass. We begin following the chain of display function calls when the program sends the display message to an Owner object.

USING AGGREGATION
WITH INHERITANCE (2)

class Pet
{

public:
void display()
{

cout << name << " vaccinated on “
<< vaccinations << endl;

}
};

class Person
{

public:
void display()
{

cout << name << endl;
cout << phone << endl;

}
};

class Owner : public Person
{

private:
Pet* my_pet;

public:
void display()
{

Person::display();
cout << account << endl;
if (my_pet != nullptr)

my_pet->display();
}

};

Presenter Notes
Presentation Notes
The Owner class demonstrates the typical changes needed to support aggregation’s pointers. When the program sends the display message to an Owner object, it passes it to its super and part objects.

	Using Aggregation:�Whole-Part With Pointers
	Using Simple Aggregation
	Inheritance & Aggregation(1)
	Using aggregation with inheritance (1)
	Inheritance & Aggregation(2)
	Using aggregation with inheritance (2)

