
BUILDING ASSOCIATION

Constructors and setters

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Many of association’s previously described challenges are a product of how the C++ compiler operates. Still, some of its challenges, such as building and maintaining it, are language-independent, deriving from the relationship itself.

project.h

class contractor;

class project
{
 private:
 contractor* theContractor;
 public:
 void set_contractor(contractor* a_c)
 {
 theContractor = a_c;
 }
};

class project;

class contractor;
{
 private:
 project* theProject;
 public:
 void set_project(project* a_p)
 {
 theProject = a_p;
 }
};

contractor.h

BUILDING ASSOCIATION:
SETTER FUNCTIONS

Presenter Notes
Presentation Notes
Setter functions allow programmers to build and update association relationships whenever necessary. Unlike aggregation, building and updating association requires changing two pointers. These operations are equivalent to two integer assignments, among the fastest hardware instructions, making their impact on program runtime negligible. But the inescapable challenge is remembering to update both pointers whenever we change the relationship.
The application code generally calls the setters, making it safe to inline them in the class. However, if either setter sends a message to (i.e., calls a function in) the opposite object, then inlining is not allowed.

CALLING SETTER FUNCTIONS

#include "contractor.h"
#include "project.h"

int main()
{
 project big;
 contractor fred;

 set_contractor(&fred);
 set_project(&big);

 return 0;
}

#include "contractor.h"
#include "project.h"

int main()
{
 project* big = new project;
 contractor* fred = new contractor;

 set_contractor(fred);
 set_project(big);

 return 0;
}

Presenter Notes
Presentation Notes
The examples illustrate the client code building an association between two objects with setter functions. The program can build the objects as local variables on the stack or dynamically on the heap. Although not illustrated, the program can build one object on the stack and one on the heap.

BUILDING ASSOCIATION
WITH CONSTRUCTORS

#pragma once
#include <iostream>
using namespace std;

class contractor;
#include "contractor.h"

class project
{
 private:
 contractor* theContractor;
 public:
 project();
 project(contractor* a_c);
};

#pragma once
#include <iostream>
using namespace std;

class project;
#include "project.h"

class contractor
{
 private:
 project* theProject;
 public:
 contractor(project* a_p);
 contractor();
};

Presenter Notes
Presentation Notes
Unlike composition, programs are not required to build association relationships in a constructor, but they can if convenient. This technique requires complementary constructors in both classes. A default constructor in one class complements a general constructor in the other. One of the general constructor’s parameters must be a pointer to an instance of the opposite class. The construction process begins when the program calls one of the default constructors.
In this example, the default project constructor complements a contractor constructor requiring a pointer to a project, and a default contractor constructor complements a project constructor requiring a pointer to a contractor. The classes may provide both complementary pairs, but only one pair is necessary.
One curious feature appears in both header files. Having a forward declaration and including a header file with a class specification for the same class seems unnecessary. If the compiler “sees” the class specification, why does it need the forward reference? Understanding the need requires recalling that the preprocessor replaces the #include statement with the contents of the named file. Only the #pragma directives prevent this replacement from becoming an endless cycle, as the headers include each other.

ASSOCIATION CLASSES:
AFTER PREPROCESSING #INCLUDE

class contractor
{
 private:
 project* theProject;
};

class project
{
 private:
 contractor* theContractor;
};

class contractor;
class project;

class contractor
{
 private:
 project* theProject;
};

class project
{
 private:
 contractor* theContractor;
};

Presenter Notes
Presentation Notes
The preprocessor creates a temporary file with the contents of the included headers replacing the #include directives. A few lines from the temporary file, all that fits on the slide, help us understand why we retain the forward declaration. The abridged classes presented here illustrate the problem: the contractor class uses the project class name before its specification. Processing the header files in the opposite order doesn’t solve the problem. It just switches the order of the classes in the temporary file, so the project class uses the contractor class before it’s specified. However, if the header files have forward declarations, those declarations are copied into the temporary file, as illustrated. The forward declarations are sufficient for declaring pointer members in each class.

project.cpp

#include "project.h"

project::project()
{
 theContractor = new contractor(this);
}

project::project(contractor* a_c)
{
 theContractor = a_c;
}

#include "contractor.h"

contractor::contractor(project* a_p)
{
 theProject = a_p;
}

contractor::contractor()
{
 theProject = new project(this);
}

contractor.cpp

COMPLEMENTARY ASSOCIATION
CONSTRUCTORS

Presenter Notes
Presentation Notes
If the program instantiates a project object, the default constructor creates a contractor and calls the complementary contractor constructor to build it. The keyword “this” refers to the project object under construction, so the constructor call passes the address of the project object to the contractor constructor, which saves it as one end of the association. The assignment operator in the project constructor saves the contractor’s address, building the other end of the relationship. If the program creates a contractor object, the process begins with the default contractor constructor and works similarly.

project.cpp

#include "project.h"

project::project()
{
 theContractor = new contractor(this);
}

project::project(contractor* a_c)
{
 theContractor = a_c;
}

#include "project.h"

int main()
{
 project little;
 project* big = new project;

 return 0;
}

APPLICATION

BUILDING ASSOCIATION:
project FIRST

Presenter Notes
Presentation Notes
The application or client can create the initial project object as a local variable on the stack or dynamically on the heap. Either way, the default project constructor calls the contractor constructor and passes to it the address of the project object.

APPLICATION

#include "contractor.h"
#include "project.h"

int main()
{
 contractor foo;
 contractor* bar = new contractor;

 return 0;
}

#include "contractor.h"

contractor::contractor(project* a_p)
{
 theProject = a_p;
}

contractor::contractor()
{
 theProject = new project(this);
}

contractor.cpp

BUILDING ASSOCIATION
contractor FIRST

Presenter Notes
Presentation Notes
Alternatively, if the application creates a contractor object, the construction process runs in the opposite direction but is otherwise the same.

	Building Association
	Building Association:�Setter Functions
	Calling Setter Functions
	Building Association�With Constructors
	Association Classes:�After Preprocessing #include
	Complementary Association�Constructors
	Building Association:�project first
	Building Association�contractor First

