DEPENDENCY

Uses / Using

Delegation

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Dependency is one of the most challenging class relationships for us to understand. But recalling some of its previous names, “uses,” “using,” or “delegation,” can help clarify its meaning.

DEPENDENCY:
ROLES AND MEANING

Various role names

Formal names are “dependent” & “independent”

| prefer “client” and “supplier”
Dependent Independent
User |-——> Supplier Best understood in terms of responsibilities
Client Server

The client class depends on the supplier class to
fulfill its responsibilities

The client class uses the supplier class to fulfill its
responsibilities

The client class delegates some of its
responsibilities to the supplier class

Presenter Notes
Presentation Notes
The classes in a dependency relationship are variously named. Formally, they are called the “dependent” and “independent” classes. I prefer the names “client” and “supplier” because I find these names easier to remember and more clearly describe the interaction between the related classes.
The best way to understand the dependency relationship is in terms of class responsibilities. Every class has some data it manages and functions that operate on the data. We can think of the functions as services that the class provides to client classes. Sometimes a client needs help to fulfill its responsibilities. So, we can say, “A client depends on a supplier,” “A client uses the services of a supplier,” or “A client delegates some of its responsibilities to a supplier.”

DEPENDENCY
PROPERTIES AND IMPLEMENTATION

LOCAL

PARAMETER VARIABLE DETAILS

class bar { ... } T foo::f2() Binding is intentionally temporary
{ . Implemented with local variables & parameters
class foo bar b; . :
(. Lifetimes are independent
private: b.g(); Relationship is created with the function call

T fi(bar b) { ... } } Relationship ends when the function returns

T f2(); Return types are insignificant
}; Suppliers may be pointers or references

Sharing:
Sharable when implemented as a local variable

Shared when implemented as a parameter

Presenter Notes
Presentation Notes
Unlike other relationships, dependency is intentionally temporary. Inheritance and composition last while the related classes exist, and programs can build and destroy association and aggregation whenever necessary. Programs build a dependency relationship, use it, and then quickly destroy it. We achieve this behavior by implementing dependency with function calls.
Following the UML 2 guidelines, software developers typically implement the dependency relationship with a function parameter. For example, Fowler states, “The most common case I use for dependencies with classes is when illustrating a transient relationship, such as when one object is passed to another as a parameter.” The program creates the parameter, including pointers and references, when it calls the function and destroys it when the function returns. I base the property values for lifetime (“independent”) and sharing (“shared”) on this practice. For building a dependency relationship, the function’s return type is unimportant.
However, a parameter is a specialized local variable, so some practitioners, especially those following the UML 1 standard, also build dependency relationships with non-parameter local variables. UML 1 included the stereotypes «parameter», «local», and «global» to clarify the supplier’s scope, but UML 2 does not.

Client Supplier Client Supplier Client Supplier Client Supplier
- - > - - - > - - - > - - >

Unidirectional > Messages > Knows About > Navigate >

DEPENDENCY DIRECTIONALITY

Presenter Notes
Presentation Notes
The UML dependency symbol is a dashed line decorated with an open arrowhead at one end. Like most class relationships, dependency is unidirectional, operating from the client to the supplier. That means the client can send messages to the supplier, the client “knows about” the supplier, and the program can navigate from the client to the supplier but not from the supplier to the client.

SOME DEPENDENCY PROBLEMS

Dependency is “a semantic relationship between two model elements in which
a change to one element (the independent one) may affect the semantics of
the other element (the dependent one).” (Booch, Rumbaugh, & Jacobson)

“A dependency exists between two elements if changes to the definition of
one element (the supplier or target) may cause changes to the other (the
client or source).” (Fowler)

Using these definitions, all relationships are dependencies!

“Trying to show all the dependencies in a class diagram is an exercise in futility;
there are too many, and they change too much.” (Fowler)

Understanding objects' behavior in a dependency relationship is more
important than diagramming it.

Presenter Notes
Presentation Notes
Unfortunately, dependency engenders some confusion among practitioners. Booch, Rumbaugh, and Jacobson, the original UML creators, define dependency as “a semantic relationship between two model elements in which a change to one element (the independent one) may affect the semantics of the other element (the dependent one).” Fowler offers a similar definition, stating that “A dependency exists between two elements if changes to the definition of one element (the supplier or target) may cause changes to the other (the client or source).” By these definitions, all class relationships are dependencies! Narrowing the relationship’s scope to local variables, especially parameters, mitigates the problem, leaving dependency as a helpful relationship.
Fowler also observes, “Trying to show all the dependencies in a class diagram is an exercise in futility; there are too many, and they change too much.” So, we only diagram dependency when it adds understanding to a design. In my opinion, it’s more important to understand the concepts behind a dependency relationship than it is to diagram it. I recommend treating dependency like program comments: the primary rule of thumb is to make the design more understandable and usable.

IMPLEMENTATION INHERITANCE

int Employee::compare(string& other)

string

Employee {
- name : string

- — =

+ compare(s : string&) : int

+ compare(s : string8) : int return name.compare(other);

T

Employee

|

| }
compare() :

|

|

J

- name : string

sfring
<—

+ compare(s : string&) : int

Presenter Notes
Presentation Notes
There is one design problem for which dependencies are especially helpful. Rumbaugh describes and names the problem: “Sometimes it appears that the use of inheritance would increase code reuse within a program, when a true superclass/subclass relationship does not exist. Do not give in to the temptation to use this implementation inheritance; use delegation instead.” Recall that delegation was an earlier name for dependency.
The Employee class has a string member variable called name and wishes to use the string compare function to compare the name with another string. Inheritance permits such code reuse, but it also suggests that an Employee Is-A string, which doesn’t sound correct. A Has-A relationship, composition as illustrated or aggregation, sounds better: an Employee Has-A name. The labeled dependency clearly illustrates the Employee class relaying the compare message to the string part class.

	Dependency
	Dependency:�Roles and meaning
	Dependency�Properties and Implementation
	Dependency Directionality
	Some Dependency Problems
	Implementation Inheritance

