
VET 1 EXAMPLE

Multi-class Example:

UML and C++

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Vet 1 is a contrived and over-simplified demonstration of the four primary UML class relationships. It imagines a simple program to manage a veterinarian’s clients.

VET UML

Aggregation.
Implemented in Dog.

Inheritance.
Implemented
in Dog.

Inheritance.
Implemented
in Fish.

Association.
Implemented in
Owner and Pet.

Composition.
Implemented in Owner.

Date
- year : int
- month : int
- day : int
+ Date(y : int, m : int, d : int)
+ display() : void

Dog
- akcNum : int
+ Dog(name : string, akc : int)
+ ~Dog()
+ setShots(y : int, m : int, d : int) : void
+ display() : void

Fish
- color : int
+ Fish(name : string, c : int)
+ display() : void

Pet
- name : string
+ Pet(name : string)
+ setOwner(o : Owner*)
+ display() : void

Address
- street : string
- city : string
+ Address(s : string, c : string)
+ display() : void

Owner
- name : string
+ Owner(n : string, s : string, c : string)
+ setPet(pet : Pet*) : void
+ display() : void

shots

home

Presenter Notes
Presentation Notes
This veterinarian limits her practice to two kinds of pets: Dogs and Fish. Each Pet has an Owner, and each Owner has a Pet. An Owner has an Address, which can never change because it’s aggregated with the Owner. A Dog has an AKC number (an American Kennel Club identification), and a Fish has a color. We can’t push these attributes up to the Pet class because all Pet subclasses do not share them. Finally, the Dog also has a Date for its latest vaccinations. The Date is aggregated to the Dog, making it easy to update as needed.

COMMON FEATURES
SAVING SLIDE SPACE

#pragma once;

#include "Pet.h"
#include "Date.h"

#include <string>
#include <iostream>
using namespace std;

• Each class header file has a “pragma”
directive

• #ifndef / #define / #endif

• Most header files include other project
headers

• All header files include two system
headers

Presenter Notes
Presentation Notes
The simple program only demonstrates the necessary syntax for building and using class relationships. Even so, the slides don’t have enough space to show complete class specifications, and each specification omits a block of code similar to the illustration.Each class specification includes a #pragma directive. At the time of this writing, the #pragma directive is not included in the ANSI specification, but most C++ compilers recognize it. If portability or strict adherence to the ANSI standard is necessary, use the #include guard formed with the #ifndef and matching #endif directives.The precise program header files included with each specification vary based on the demonstrated class relationship and the related classes. All demonstration classes use the string and iostream classes, so each specification includes their header files.

PART CLASSES

class Address
{
 private:
 string street;
 string city;

 public:
 Address(string s, string c)
 : street(s), city(c) {}

 void display()
 {
 cout << "Street: " << street <<
 " City: " << city << endl;
 }
};

class Date
{
 private:
 int year;
 int month;
 int day;

 public:
 Address(int y, int m, int d)
 : year(m), month(m), day(d) {}

 void display()
 {
 cout << year << "/" << month <<
 "/" << day << endl;
 }
};

Presenter Notes
Presentation Notes
The Address and Date classes are “leaves” at the end of one-way relationships. Neither class “knows about” any other program class, so the string and iostream header files are the only ones #included in their specifications. Both classes are simple: their constructors initialize the member variables with initializer lists, and the display functions access and display the data.

THE OWNER / ADDRESS RELATIONSHIP
COMPOSITION

Address
- street : string
- city : string
+ Address(s : string, c : string)
+ display() : void

Owner
- name : string
+ Owner(n : string, s : string, c : string)
+ setPet(pet : Pet*) : void
+ display() : void

home

class Owner
{
 private:
 string name;
 Address home;

 public:
 Owner(string n, string s, string c)
 : name(n), home(s, c) {}

 void display()
 {
 cout << "Owner: " << name << endl;
 home.display();
 }
};

Presenter Notes
Presentation Notes
The Owner class is more complex, participating in association and composition relationships. While it’s not ideal, this slide focuses on composition and omits the association code. You can see the complete, contextualized code in the textbook.The Owner class “knows about” the Address class and includes its header file. The UML class diagram names the composition relationship, and the C++ code uses that name as the name of the implementing member variable. The Owner constructor uses the name to call the Address constructor, chaining the constructor calls, and the Owner display function uses the name to call the Address display, chaining those function calls.

THE DOG / DATE RELATIONSHIP
AGGREGATION

Date
- year : int
- month : int
- day : int
+ Date(y : int, m : int, d : int)
+ display() : void

Dog
- akcNum : int
+ Dog(name : string, akc : int)
+ ~Dog()
+ setShots(y : int, m : int, d : int) : void
+ display() : void

shots

class Dog : public Pet
{
 private:
 Date* shots = nullptr;

 public:
 ~Dog() { delete shots; }

 void setShots(int y, int m, int d)
 {
 if (shots != nullptr)
 delete shots;
 shots = new Date(y, m, d);
 }

 void display()
 {
 cout << "AKC#: " << akcNum << endl;
 if (shots != nullptr)
 shots->display();
 }
};

Presenter Notes
Presentation Notes
The Dog class also participates in two relationships, inheritance and aggregation. This slide illustrates the Dog and Date aggregation where the Dog is the whole. The include directive for the Date header file is omitted to save space. Implementing aggregation with a pointer requires the class to have a destructor function that destroys the part when the program destroys the whole. A destructor may not be needed if the whole shares but does not “own” the part. Programs can build aggregation with a constructor, but a setter function is common, allowing programs to change the relationship anytime after creating the objects. Finally, testing the pointer for a null value is crucial because attempting to access a member through a null pointer is a runtime error. If the pointer is not null, the program calls the display function with the arrow operator.

THE OWNER / PET RELATIONSHIP
OWNER SIDE OF ASSOCIATION

Pet
- name : string
+ Pet(name : string)
+ setOwner(o : Owner*)
+ display() : void

Owner
- name : string
+ Owner(n : string, s : string, c : string)
+ setPet(pet : Pet*) : void
+ display() : void

class Pet;

class Owner
{
 private:
 Pet* myPet = nullptr;

 public:
 Owner(string n, string s, string c)
 : name(n), home(s, c) {}

 void setPet(Pet* p) { myPet = p; }

 void display()
 {
 cout << "Owner: " << name << endl;
 if (myPet != nullptr)
 myPet->display();
 }
};

Presenter Notes
Presentation Notes
Association is the only bidirectional class relationship. As such, we must explore both ends of the relationship and begin with the Owner-to-Pet side. The class specification shown here omits the #include “Pet.h” directive and begins with a forward declaration, which is needed only for association. Programs can build associations in several ways, with a setter function being the most common. It’s crucial to note that the setter only builds one end of the relationship, and the Pet is responsible for building the other.Association’s two-way or bidirectional operation creates a potential problem when programmers use it. It’s possible for function calls between the peers to form an endless cycle. For example, imagine that the Owner display function calls the Pet display, and the Pet display calls the Owner display. Once started, there isn’t a way to break out of the cycle. In the vet example, the Owner display does call the Pet display, but as we’ll see, the Pet display doesn’t call any Owner functions, breaking the cycle.

THE OWNER / PET RELATIONSHIP
PET SIDE OF ASSOCIATION

Pet
- name : string
+ Pet(name : string)
+ setOwner(o : Owner*)
+ display() : void

Owner
- name : string
+ Owner(n : string, s : string, c : string)
+ setPet(pet : Pet*) : void
+ display() : void

class Owner;

class Pet
{
 private:
 string name;
 Owner* owner = nullptr;

 public:
 Pet(string n) : name(n) {}

 void setOwner(Owner o) { owner = o; }

 void display()
 {
 cout << "Pet: " << name << endl;
 }
};

Presenter Notes
Presentation Notes
The Pet class also participates in two relationships: inheritance and association. This slide illustrates how the Pet class builds the other end of the association relationship and omits the inheritance features. It also omits the #include “Owner.h” directive. The class specification also requires a forward declaration and builds the Pet-end of the relationship with another pointer variable and setter function. The Pet display function prints the Pet’s name but does not call the Owner’s display, avoiding the endless cycle problem.

INHERITANCE (1)
THE PET SUPERCLASS

Pet
- name : string
+ Pet(name : string)
+ setOwner(o : Owner*)
+ display() : void

Dog
- akcNum : int
+ Dog(name : string, akc : int)
+ ~Dog()
+ setShots(y : int, m : int, d : int) : void
+ display() : void

Fish
- color : int
+ Fish(name : string, c : int)
+ display() : void

class Pet
{
 private:
 string name;

 public:
 Pet(string n) : name(n) {}

 void display()
 {
 cout << "Pet: " << name << endl;
 }
};

Presenter Notes
Presentation Notes
The Pet class is also a superclass in an inheritance hierarchy, and this slide focuses on that relationship, omitting the association features. Surprisingly, the completed vet program doesn’t create or use an instance of the Pet class. It can use Pet to define pointer variables but these point to Dog and Fish objects. This unexpected situation sets the stage for polymorphism, which we address in two chapters.In this example, the Pet’s display function only prints the Pet’s name and doesn’t call other functions.

INHERITANCE (2)
THE DOG SUBCLASS

Pet
- name : string
+ Pet(name : string)
+ setOwner(o : Owner*)
+ display() : void

Dog
- akcNum : int
+ Dog(name : string, akc : int)
+ ~Dog()
+ setShots(y : int, m : int, d : int) : void
+ display() : void

Fish
- color : int
+ Fish(name : string, c : int)
+ display() : void

class Dog : public Pet
{
 private:
 int akcNum;

 public:
 Dog(string name, int akc)
 : Pet(name), akcNum(akc) {}

 void display()
 {
 Pet::display();
 cout << "AKC#: " << akcNum << endl;
 if (shots != nullptr)
 shots->display();
 }
};

Presenter Notes
Presentation Notes
Programs typically instantiate and use subclasses, such as Dog and Fish. This example demonstrates how a subclass builds the inheritance relationship, which requires the specification to #include the superclass header. The subclass constructor calls its superclass constructor to initialize the inherited features. Calling a superclass constructor from an initializer list is the only place where the element order within the list is significant: the program must call the superclass constructor first. Chaining subclass functions to the corresponding superclass functions is a common task. In this example, when the program calls the Dog display function, the function displays the Dog’s AKC number and calls the Pet’s display function to print the Dog’s name.

INHERITANCE (3)
THE FISH SUBCLASS

Pet
- name : string
+ Pet(name : string)
+ setOwner(o : Owner*)
+ display() : void

Dog
- akcNum : int
+ Dog(name : string, akc : int)
+ ~Dog()
+ setShots(y : int, m : int, d : int) : void
+ display() : void

Fish
- color : int
+ Fish(name : string, c : int)
+ display() : void

class Fish : public Pet
{
 private:
 int color;

 public:
 Fish(string name, int c)
 : Pet(name), color(c) {}

 void display()
 {
 Pet::display();
 cout << "Fish color: " <<
 color << endl;
 }
};

Presenter Notes
Presentation Notes
The Fish class only participates in and has features for inheritance, making it less complex than Dog. But like the Dog class, the Fish constructor calls the Pet constructor from its initializer list, and its display function calls the Pet display.

BUILDING THE OBJECTS
MAIN

#include "Owner.h"
#include "Dog.h"
using namespace std;

int main()
{
 Dog myPet("Dogbert", 300);
 Owner theOwner("Dilbert", "115 Elm St.", "Ogden");

 myPet.setShots(2000, 9, 1);

 myPet.setOwner(&theOwner);
 theOwner.setPet(&myPet);

 theOwner.display();

 return 0;
}

Presenter Notes
Presentation Notes
Finally, the demonstration includes a main function to create the program objects and relationships. This example only directly uses the Owner and Dog classes, so it only includes those header files. The program could create and use a Fish object, requiring the appropriate header file. Finally, if we used pointers, we could replace “Dog” in the first statement with “Pet.” Understanding why we might want to do so must wait until the polymorphism chapter.

	Vet 1 Example
	Vet UML
	Common features�Saving slide space
	Part classes
	The Owner / address relationship�Composition
	The Dog / Date Relationship�Aggregation
	The Owner / Pet relationship�Owner side of Association
	The Owner / Pet relationship�Pet Side of Association
	Inheritance (1)�The pet Superclass
	Inheritance (2)�The Dog subclass
	Inheritance (3)�The fish subclass
	Building the objects�main

