
CASTING & MEMBER FUNCTIONS

Locating and calling functions within inheritance hierarchies

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Up to now, our preparation for polymorphism has focused on accessing the member variables inside an object. Although polymorphism is a behavior that is associated with member functions, it’s also possible to have functions that do not behave polymorphically. In this section, we briefly explore the behavior of non-polymorphic member functions but in the context of inheritance and casting.



MEMBER FUNCTIONS & INHERITANCE

foo

+function1() : void

bar

+function1() : void

+function2() : void

class foo
{

public:
void function1();
void function2();

};

class bar : public foo
{

public:
void function1();

};

Presenter Notes
Presentation Notes
The previous examples focused on variables and not on functions, so we introduce a new pair of classes, related by inheritance, that provide some example member functions. Notice that both classes provide a function named function1; foo also provides a second function named function2 that does not have a corresponding function in bar.When functions are provided in classes related by inheritance, and have the same name, the same return type, and the same argument list, we say the function in the subclass overrides the function in the superclass. A function override is one of the requirements for polymorphism.



MEMBER FUNCTIONS & INHERITANCE

foo

+function1() : void

bar

+function1() : void

+function2() : void

class foo
{

public:
void function1();
void function2();

};

class bar : public foo
{

public:
void function1();

};

foo* p1 = new foo;

p1->function1();
p1->function2();

Presenter Notes
Presentation Notes
In this example, we make an instance of the superclass foo and store its address in a pointer of type foo. Now, when we call either function that belongs to class foo, the compiler enters the symbol table at the foo entry, where it finds information about both functions. As a result, both function calls are to the functions belonging to the foo class.



MEMBER FUNCTIONS & INHERITANCE

foo

+function1() : void

bar

+function1() : void

+function2() : void

class foo
{

public:
void function1();
void function2();

};

class bar : public foo
{

public:
void function1();

};

bar* p2 = new bar;

p2->function1();
p2->function2();

Presenter Notes
Presentation Notes
For the next example, we make an instance of the subclass bar and store its address in a bar pointer. When we call the functions, the compiler enters the symbol table at the bar entry, where it finds information about function1 but not about function2. The compiler generates code to call the bar version of function1, but it must follow the inheritance relationship to the superclass while searching for function2. The compiler finds function2 in the foo class and generates code to call it. In summary, the call to function1 runs bar function1, while the call to function2 runs the function2 inherited from the superclass or foo.



MEMBER FUNCTIONS & INHERITANCE

foo

+function1() : void

bar

+function1() : void

+function2() : void

class foo
{

public:
void function1();
void function2();

};

class bar : public foo
{

public:
void function1();

};

foo* p3 = new bar;

p3->function1();
p3->function2();

Presenter Notes
Presentation Notes
The most interesting, and arguably the most important, example is when we make an instance of the subclass bar, but upcast it to the superclass or foo. In the absence of polymorphism, which is the case in this example, the functions that are called are determined by solely by the class type of the pointer variable. So, in this example, both function calls run the functions belonging to the foo class.



FUNCTION BINDING

• Programs may have multiple functions with the same name (overloaded and 
overridden)

• Function binding is when a function call is bound or connected to the correct 
function

• All of the examples illustrated here demonstrate the same kind of binding

• Compile time binding

• Early binding

• Static binding

Presenter Notes
Presentation Notes
The term function binding was introduced earlier in the chapter. The term just refers to the time when a function call is bound or connected with the correct function body, or, more precisely, with the machine code generated from the function body. When a program only has one function with a given name, function binding is simple. But programs can both overload and override functions, both of which can create multiple functions with the same name. So far, all the examples that we have seen demonstrate compile time, early, or static binding. All three terms mean the same thing: the compiler generates the function binding when it compiles the program.


	Casting & Member Functions
	Member Functions & Inheritance
	Member Functions & Inheritance
	Member Functions & Inheritance
	Member Functions & Inheritance
	Function Binding

