POLYMORPHISM IN DEPTH

Run Time Binding
Late Binding
Dynamic Binding
Dynamic Dispatch

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
We are finally ready to explore polymorphism in greater detail. When a program has multiple functions with the same name, there must be a way to determine to which function a call refers. If the functions are overloaded, they will have different argument lists, which is enough information to let the compiler match a call with a function. But when the functions are overridden, the return type and the argument lists are the same, forcing the compiler to delay making a choice.
Polymorphism has several synonyms whose names emphasize this delaying behavior. Run time, late, and dynamic all refer to an action that takes place once the programs has started running (versus when the program is compiled). Binding or dispatch refers to identifying and calling the correct function.



REQUIREMENTS

Inheritance

Function overriding
Upcasting

Pointer or reference variable

“virtual” function



Presenter Notes
Presentation Notes
There are five requirements that must be satisfied before a function can run or behave polymorphically. It’s important that you not only know the requirements but that you can recognize and identify them in a program. Let’s review all five requirements from two different perspectives.



INHERITANCE AND
OVERRIDDEN FUNCTIONS

+draw() : void

N

Circle Rectangle Triangle

+draw() : void +draw() : void +draw() : void



Presenter Notes
Presentation Notes
It’s easy to spot in inheritance in a UML class diagram. Once you know what to look for, spotting the overridden functions is also easy. Correctly overridden functions appear in different classes that are related by inheritance. The functions must all have the same return type and they must all have identical argument lists. The overridden functions in this example have empty argument lists, but the requirement is that they are identical, not necessarily empty. So, if each function had an integer argument, that would satisfy the identical argument requirement. Or, if each function had an integer and a double argument, if the arguments are in the same order in all the functions, that too would satisfy the identical argument requirement.



“virtual” ENABLES POLYMORPHISM

class Shape class Rectangle : public Shape
{ {

public: public:

virtual void draw/() ; virtual void draw() ;

}i } i
class Circle : public Shape class Triangle : public Shape
{ {

public: public:

virtual void draw () ; virtual void draw() ;

¥ ¥


Presenter Notes
Presentation Notes
It’s not as easy to see the inheritance in code as it is in a class diagram, which is the whole point of the UML being a graphical representation – to make it easier to see important details in complex programs. But with a little experience, the syntax that implements inheritance becomes much easier to see.
We can also see the function overrides clearly in the code – once we know what to look for.
Finally, the “virtual” keyword is the last requirement in our list. The UML is meant to be language independent, so it doesn’t have a notation for virtual functions. It’s important to notice that making the overridden function virtual in the superclass makes all the overriding functions in the subclasses virtual as well. That is, the overriding functions inherit the “virtualness” of the function in the superclass. Although optional, I like to explicitly add the “virtual” keyword to the overriding functions in the subclasses – that way, if I’m working with one of the subclasses and don’t have access to the superclass, I can still see that the function is virtual.
Having one or more virtual, and therefore potentially polymorphic, functions in a class does not prevent the class from having functions that are not virtual and are therefore not polymorphic.



UPCASTING WITH POINTERS

ASSIGNMENT FUNCTION CALL

Shape* s = new Circle(...); vold render (Shape* s) {...

render (new Circle(...));


Presenter Notes
Presentation Notes
Two requirements for polymorphism remain: pointer or reference variables and an upcast operation, which can take place in one of two ways.
Most of the examples used so far illustrate an upcast occurring when the address of an instance of a subclass is stored in a pointer variable with an assignment operation. Casting with assignment makes the operation very easy to see, but casting is rarely done this way in “real” code.
It’s far more common, in “real” or production code, for a cast to take place through a function call. Here, the address of an instance of a subclass is passed as a parameter to a function that has as an argument a pointer of superclass type. The function call produces the same results as the assignment, that is, s points to an instance of Circle, but the function call effectively separates the right side of the assignment from the left side, which makes it more difficult to see the upcast.



UPCASTING WITH POINTERS

ASSIGNMENT FUNCTION CALL
Shape* s = new Circle(...); volid render (Shape* s) {...
render (new Circle(...)):;

s—=>draw () ;

when polymorphism is inactive (off)


Presenter Notes
Presentation Notes
We can use this small example to distinguish and to summarize polymorphic and non-polymorphic behavior. Assume, just for a moment, that one or more of the requirements for polymorphism has not been satisfied. In that case, it is the class type of the pointer variable that determines which function is called. So, when the draw function is called, it is the Shape draw function that runs.



UPCASTING WITH POINTERS

ASSIGNMENT FUNCTION CALL
Shape* s = new Circle(...); vold render (Shape* s) {...
render (new Circle(...));

s—->draw () ;

when polymorphism is active (on)


Presenter Notes
Presentation Notes
However, if all five requirements for polymorphism are satisfied, then it is the class type of the object itself that determines which function is called. So, when the draw function is called, it is the Circle draw function that runs.



vold render (Shape* s)

{

USING POLYMORPHISM

s—>draw () ;

In object speak, calling a function is often
referred to as sending a message.

Send object s the “draw” message
Polymorphism:

An object responds appropriately to a
message for the kind of object that it is

Function binding takes place at the time of
the function call — binds to the function
belonging to the object


Presenter Notes
Presentation Notes
In object-oriented terms, when we call a member function, the call is often described as “sending a message to the object.” So, in this example, we are sending s the “draw” message. One way of defining polymorphism is saying that how an object responds to a message depends on what the object is. In this example, a Circle responds to the “draw” message by drawing a circle; a Rectangle object would respond by drawing a rectangle; and a Triangle object would respond by drawing a triangle.
Another way of looking at polymorphism is as function binding. The function call to draw is bound to one of the shape classes at the moment of the call and it is bound to the function that belongs to the class from which the object pointed to by s is instantiated.



ACCESSING MEMBER VARIABLES
WITHOUT DOWNCASTING

Employee

SalariedEmployee has a private member named salary
pay = salary / 24
SalesEmployee
Inherits salary
Has a private member named commission
pay = salary / 24 + commission

But a SalesEmployee object cannot access salary!

+calc_pay(): double

%

SalariedEmployee

-salary : double

+calc_pay() : double

f

SalesEmployee

-commission : double

+calc_pay() : double



Presenter Notes
Presentation Notes
The next example illustrates how polymorphism works with member variables. The salaried employee class defines a private member variable named “salary.” If salaried employees are paid twice a month, then, ignoring taxes and other withholdings, their pay is their salary divided by 24.
The sales employee class inherits “salary” but is unable to access it directly because it is private. The sales employee class also defines a private member variable named “commission.” So, with the same simplifications noted before, sales employees’ pay is their bimonthly salary plus their commission. But how can we access a sales employee’s salary, which is a private member variable?



USING PUBLIC FUNCTIONS TO
ACCESS PRIVATE DATA

SalariedEmployee SalesEmployee
double calc pay () double calc pay ()
{ {
return salary / 24; return SalariedEmployee::calc pay ()

} + commission;


Presenter Notes
Presentation Notes
The best practice is to use public member functions to access private member data. We could create a “getter” function to access the private member variables, but an even better object-oriented approach is to create a function that performs the complete calculation. Here, we create a public member function named “calc_pay” that not only accesses the private member variables but also calculates the employee’s bimonthly pay.
The sales employee calc_pay function calls the salaried employee’s calc_pay function, which is how a SalesEmployee object is able to access its inherited salary variable even though it is private in the SalariedEmployee class.
How the amount of pay is calculated depends on which kind or class or employee the pay is calculated for.



POLYMORPHISM REDUCES THE
NEED TO DOWNCAST

SalariedEmployee SalesEmployee
virtual double calc pay () virtual double calc pay ()
{ {
return salary / 24; return SalariedEmployee::calc pay ()
} + commission;
}
Employee* e = new SalesEmployee(...);

double pay = e->calc pay();


Presenter Notes
Presentation Notes
The calc_pay function already has most of the features needed for polymorphism, and only the keyword “virtual” is needed to complete the requirements.
Now, in the case of an upcast, polymorphism reduces the need to downcast to access subclass member data. To finish the example, we instantiate a SalesEmployee and upcast it to an Employee. When we call the calc_pay function, or, in object-speak, we send “e” the calc_pay message, the compiler enters the symbol table at the Employee entry, where it finds the calc_pay function. Through polymorphism, it is the SalesEmployee calc_pay function that runs. The SalesEmployee calc_pay function calls the SalariedEmployee calc_pay function to calculate the sales employee’s salary and then adds the sales employee’s commission.



QUIZ: GROUP |

?lass Parent Parent* Pl = new Parent;
public:
void funcA() {...}
virtual void funcB() {...}
void funcC () {...}
} s Pl->funcA(); // (a)

class Child : public Parent
{ _ .
public: Pl->funcB(); // (b)
void funcA() {...}

virtual void funcB() {...}
b e Pl1->funcC(); // (c)


Presenter Notes
Presentation Notes
It’s time to test our understanding of how function calls work, both with and without polymorphism. Study the classes on the left and the object instantiation at the top right. Which functions do the function calls run? Fill in the blanks with either Parent or Child, signifying which class owns the function that is called. Please press the pause button while you answer the questions and then continue to see the answers.



QUIZ: GROUP |

?lass Parent Parent* Pl = new Parent;
public:
void funcA() {...}
virtual void funcB() {...}
void funcC () {...}
}; Pl->funcA(); // (a) Parent

class Child : public Parent

{

public: Pl->funcB(); // (b) Parent

void funcA() {...}
virtual void funcB() {...}

i Pl->funcC(); // (c) Parent


Presenter Notes
Presentation Notes
In this problem there isn’t an upcast operation – the Parent class appears on both sides of the assignment operator – so it is the Parent class that owns all three function calls.



QUIZ: GROUP 2

?lass Parent Parent* P2 = new Child;
public:
void funcA() {...}
virtual void funcB() {...}
void funcC () {...}
} P2->funcA(); // (d)_

class Child : public Parent
{ _ .
public: P2->funcB(); // (e)
void funcA() {...}

virtual void funcB() {...}
I P2->funcC(); // (f)


Presenter Notes
Presentation Notes
The classes on the left are the same as before, but the assignment at the top right is different. Please pause the playback while you determine which class owns each of the function calls.



QUIZ: GROUP 2

class Parent
public:

virtual

class Child
public:

virtual

Parent*

void funcA() {...}
void funcB() {...}
void funcC() {...}

P2->funcA () ;

public Parent
P2->funcB () ;

void funcA() {...}
void funcB() {...}

P2->funcC () ;

Child;

Parent

Child

Parent


Presenter Notes
Presentation Notes
This problem adds the upcast operation that was missing from the previous problem.
functionA is not a virtual function and is not polymorpic – the function called is determined by the pointer type or Parent.
functionB is virtual and so has all the polymorphic requirements satisfied. The function called is determined by the kind of object instantiated or Child.
The Child class does not have a functionC, so the call is to the function inherited from the Parent.



QUIZ: GROUP 3

class Parent
{
public:
vold funcA ()
virtual void funcB ()
vold funcC ()

1

class Child : public Parent
{
public:
vold funcA ()
virtual void funcB ()

1

—
(]

(]
——

Child* C2 =

Cz2->funcA () ;

C2->funcB () ;

C2->funcC{() ;

new

//

//

//

Child;


Presenter Notes
Presentation Notes
The instantiation changes again; please pause playback while you answer the questions.



QUIZ: GROUP 3

class Parent
{
public:
vold funcA ()
virtual void funcB ()
vold funcC ()

1

class Child : public Parent
{
public:
vold funcA ()
virtual void funcB ()

1

—
(]

(]
——

Child* C2 =

Cz2->funcA () ;

C2->funcB () ;

C2->funcC () ;

new

//

//

//

Child;

(g) Child
(h) Child
(1) Parent



Presenter Notes
Presentation Notes
This problem also lacks an upcast, so most of the functions belong to the Child class, which appears on both sides of the assignment operator.



QUIZ: GROUP 4

class Parent
{

public:
vold funcA ()
void funcB ()
vold funcC ()

virtual
i

class Child
{

public Parent

public:
vold funcA ()
virtual void funcB ()

1

—
(]

(]
——

Child temp;

Parent P3 = temp;

P3.funch () ; /7 (3)

P3.funcB () ; // (k)

P3.funcC () ; // (1)


Presenter Notes
Presentation Notes
Two statements are needed to set up the final problem. Please pause the playback while you answer the last two questions.



QUIZ: GROUP 4

class Parent
{
public:
vold funcA ()
virtual void funcB ()
vold funcC ()

1

class Child : public Parent
{
public:
vold funcA ()
virtual void funcB ()

1

—
(]

(]
——

Child temp;

Parent P3 =

P3.funcA () ;

P3.funcB () ;

P3.funcC () ;

temp;

//

//

//

(J)

(k)

(1)

Parent

Parent

Parent


Presenter Notes
Presentation Notes
The final problem lacks a pointer variable and the assignment operation results in an object slice. So, all three function calls are determined by the calling object, which is an instance of the Parent class.



	Polymorphism In Depth
	Requirements
	Inheritance and�Overridden Functions
	“virtual” Enables Polymorphism
	Upcasting with pointers
	Upcasting with pointers
	Upcasting with pointers
	Using Polymorphism
	Accessing Member variables Without Downcasting
	Using Public Functions To�Access Private Data
	Polymorphism Reduces the�need to downcast
	Quiz: Group 1
	Quiz: Group 1
	Quiz: Group 2
	Quiz: Group 2
	Quiz: Group 3
	Quiz: Group 3
	Quiz: Group 4
	Quiz: Group 4

