CONVERTING FORMULAS TO C++

Variables, Operators, and Functions

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Certainly not all computer programming involves mathematics, but a surprising amount of game and financial programming do require some math. It's important that programmers understand how to convert mathematical formulas into working C++ statements. Fortunately, none of the math that we use here goes beyond high school algebra.

VARIABLES

Variables must be defined and initialized before they may be used

All of the following examples assume that the variables are defined and, where
necessary, are initialized

Variable names must be unique within a scope

Variables in formulas may have subscripts but variables in C++ may not
my may be converted to mO;

F,=F,. *F _,maybeconvertedto Fn = Fnl + Fn2; or £ = f1 + £2;

Presenter
Presentation Notes
One of the core parts of any program are variables. Variables are a named location in memory - named by a programmer. The location in memory is used to store a value that may change or vary over time. Every variable must be defined before it can be used. It must also be initialized (i.e., have the first or initial value stored in it) before it can act as an expression (i.e., appear on the right side of an assignment operator). Each variable name must be unique within its defining scope.
When converting formulas to C++ statements, it's customary, as far as is possible, to use the variable names appearing in the mathematical formula as the variable names in the C++ code. One obvious case where we need to change this is when the formula uses subscripts as part of the variable name - C++ doesn't have subscripts! Generally, good, unique C++ variable names can be created quite simply from the formula variable names with just a slight rewriting.

MULTIPLICATION

Formulas denote multiplication by placing variables next to each other: PV
C++ requires an explicit operator: *
The formula T = PV is translated into C++ as

T=P*V

Temperature = Pressure *Volume

Presenter
Presentation Notes
Multiplication is surprisingly tricky. Mathematical formulas denote multiplication by juxtaposing two variables (i.e., placing them right next to each other). The multiplication operation is implied. But in C++, variable names can, and usually do, consist of multiple letters, so in C++ PV could be a single variable (which is just how the compiler treats it) rather than P times V. So we need something less ambiguous to denote multiplication. In C++ the multiplication operator is the asterisk or star, and it must always be used to denote the multiplication operation.

DIVISION

Formulas denote division in two ways:
v=x/t

X
V=
t

The second way can imply grouping: ﬁ,TZ -T, must be done before the division
7 — 4l

C++:P/(T2-TI)

Presenter
Presentation Notes
Formulas denote division with a line. The line may be drawn on a slant or horizontally. The only thing we need to watch out for is that the horizontal line also serves as a grouping symbol. In the example, the subtraction operation must be carried out before the division operation.

INTEGER DIVISION

Integer division can cause unexpected results
c=2(f —32)
c=5/9%(f—32), always produces a 0
Problem is easily corrected
c=5.0/9.0%(f—32)
c=5%(f-32)/9
c=(f-32)%5/9

Presenter
Presentation Notes
Another potential problem with division involves the previously described behavior of integer division. Assume that c and f are double variables but that 5 and 9 are integer constants. In the first example, the order of evaluation is from left to right, so 5/9 is calculated first. The parentheses do force the subtraction operation to take place before the result is multiplied by 5/9, but by that time, the division is done - and produces a 0.
The problem can be solved in several ways: We can make either or both of the constants 5 or 9 into a double by adding a decimal point to them. If only one constant is explicitly made into a double, the compiler promotes the other in order to complete the division operation.
We can also move the division operation to the end of the statement. Here, the compiler first evaluates f-32; to complete the subtraction operation, the compiler must promote 32 to a double to match the double variable f. That means that f-32 is a double-valued expression, so 5 * (f - 32) is also a double-valued expression. When the compiler divides 5 * (f - 32) by 9, the 9 is promoted to a double and the division operation is carried out using floating point arithmetic.
Finally, if the 5/9 is moved to the end, the conversion from integers to doubles begins with f-32 and proceeds as just described.

UNARY MINUS

C++ has both a unary minus and a unary plus (plus isn’t really useful)
Both convert from formulas straight to C++

+N

‘N

-N can be implemented as -1 * N but this looks cluttered and amateurish

PR
1 -A+R)N

payment =

double payment = P * R / (1 - pow(l + r, -N));

Presenter
Presentation Notes
Both plus and minus can be used as unary or one-operand operators, but unary plus isn't too useful. Unary minus on the other hand is quite useful and is used to negate or change the sign of an expression. The effect of the unary minus is the same as multiplying by a -1, but multiplying by -1 looks rather amateurish.

EXPONENTIATION

Like Java, C++ does not have an exponentiation operator

When squaring or even cubing an integer, it’s just about as fast and easy to
multiply the number by itself

X2 = x * x; X3 = x * x * x;

For higher powers, or variable, negative or factional exponents, use the pow
function

y = xP/d y = x7% y = pow(x, p/q);
The arguments form a group and so don’t require parentheses
Remember that pow returns a double

The return value is a single value that doesn’t require parentheses

Presenter
Presentation Notes
Converting exponentiation from a formula into C++ code is fairly simple but does require us to pay attention to detail. C++ (like Java) does not have an exponentiation operator but does have the pow function introduced earlier in this chapter.
When squaring or even cubing a number, especially when the result needs to be an integer, it is often more convenient to just multiply the number by itself an appropriate number of times. But when the exponent is larger than three or four, or when the exponent is negative or a fractional value, then the pow function is clearly the best approach.
The arguments are separated by a comma, which acts as a grouping operator, which means that the arguments do not need additional parentheses beyond those required by the expressions themselves. Also remember that pow returns a double, so if the result is stored in or used as an int, it must be cast first.

SQUARE ROOTS

The sqgrt function calculates and returns a square root

Everything under the radical is part of the function’s non-negative argument
(i.e., the argument is self-grouping)

The return value also acts as a group

m =m0 / sqrt(l - v*v / (c*c));
m =m0 / sqgrt(l - pow(v, 2) / pow(c,2));

Presenter
Presentation Notes
Simple square roots appearing in a formula are easily translated into the C++ sqrt function. Just remember that everything appearing under the radical is a unit or a C++ expression. In this example, the hard part is dealing with the division operation - notice the parentheses surrounding c*c - why are they needed?

SYMBOLS OF INCLUSION

Mathematical formulas can use (), [], and { } for grouping
C++ can only use ()

You can always use parentheses even when precedence and associativity
resolve all ambiguity

No magically correct number of parentheses

Too many parentheses make the statement harder to read and increase the likelihood
of mismatched or unbalanced parentheses

P:F{(Hrz”—l}[(lir}} P=F*(r/(pow(l +r,n)-1))* (I /(I +r));

Presenter
Presentation Notes
Finally, mathematical formulas are free to use various "symbols of inclusion," which are really just grouping symbols. In C++, we can only use parentheses for grouping, so we must convert any other grouping symbols, in this example the square brackets, into parentheses.
The outer set of parentheses in this example are not really needed. There is no magically correct number of parentheses, but too many parentheses can make reading the code difficult.

	Converting Formulas to C++
	Variables
	Multiplication
	Division
	Integer Division
	Unary minus
	Exponentiation
	Square Roots
	Symbols of Inclusion

