

LOGICAL EXPRESSIONS

Writing the "Test" part of control statements

Delroy A. Brinkerhoff

TWO KINDS OF OPERATORS

RELATIONAL

- == Equal to
- != Not equal to
- < Less than
- <= Less than or equal to
- > Greater than
- >= Greater than or equal to

LOGICAL

- && Logical AND
- || Logical OR
- ! Logical Not

UNDERSTANDING LOGICAL OPERATORS

El	E2	EI && E2
F	F	F
F	т	F
т	F	F
т	т	т

E	! E
F	Т
Т	F

Ę

SHORT CIRCUIT EVALUATION

LOGICAL AND

- if (E1 && E2)
- If E1 is false, E1 && E2 is false regardless of the value of E2
- E2 is NOT evaluated

LOGICAL OR

- if (E1 || E2)
- If E1 is true, E1 || E2 is true regardless of the value of E2
- E2 is NOT evaluated
- if (n != 0 && 100 / n > min) if (s == nullptr || s->length() == 0) return;

SHORT CIRCUIT EVALUATION (2)

C++

- if (s == nullptr || s->length() == 0)
 return;
- To translate to Java, change
 - nullptr to null
 - -> to .

JAVA

- if (s == null || s.length() == 0)
 return;
- If s is null, then s == null is true
- if (true || s.length() == 0)

BOOLEAN TYPE: TRUE AND FALSE

In C++ 0 is false and non-0 is true

Ē

- That means that numeric types and expressions can be used in control statements
- The bool data type, and true and false are a syntactic candy coating for ints (false = 0 and true = 1)

if (counter = 10)

• • •


```
if (counter == 10)
```

• • •

A COMMON ERROR

INCORRECT

if (counter = 10)

• • •

CORRECT

if (counter == 10)

• • •

boolean running; if (running = false)