
LOGICAL EXPRESSIONS

Writing the “Test” part of control statements

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The power and endless variety of computer programs is derived from control statements, and the control part of every control statement rests on a test formed by logical expressions. The logical expressions in turn rest on a surprisingly small number of relational and logical operators.



RELATIONAL

• == Equal to

• != Not equal to

• < Less than

• <= Less than or equal to

• > Greater than

• >= Greater than or equal to

• && Logical AND

• || Logical OR

• ! Logical Not

LOGICAL

TWO KINDS OF OPERATORS

Presenter
Presentation Notes
All relational operators are implemented as binary operators, meaning that they have left and right operands. They relate or compare two sub-expressions, and the result of the comparison is a logical or Boolean value - either true or false.
The logical-AND and -OR operators are both binary (they have two operands), but the logical-OR operator is unary (it has a single operand). All logical operator operands are Boolean-valued expressions. Programmers create Boolean-valued expressions with relational or logical operators, or with the “true” and “false” keywords.



LOGICAL AND

E1 E2 E1 && E2

F F F

F T F

T F F

T T T

E1 E2 E1 || E2

F F F

F T T

T F T

T T T

LOGICAL OR

UNDERSTANDING LOGICAL OPERATORS

E ! E

F T

T F

LOGICAL NOT

Presenter
Presentation Notes
Logical operators are so fundamental to software development that we must always know how they operate without pausing to lookup their behavior. Although I’m not a fan of rote memorization, I recommend that you memorize these true tables. The E’s in each table stand for an arbitrary Boolean-valued expression.
Notice that the logical-AND operator only produces a true result when both operands are true. Similarly, the logical-OR operator only produces a false result when both operands are false. The logical-NOT operator is simple - it toggles or flips it operand’s value: true becomes false and false become true.
Over time, experience will replace rotely memorized information with a more complete and persistent kind of memorization called automation, which is memorizing through use.



LOGICAL AND

• if (E1 && E2)

• If E1 is false, E1 && E2 is false regardless 
of the value of E2

• E2 is NOT evaluated

• if (n != 0 && 100 / n > min)

• if (E1 || E2)

• If E1 is true, E1 || E2 is true regardless of the value of 
E2

• E2 is NOT evaluated

• if (s == nullptr || s->length() == 0)

return;

LOGICAL OR

SHORT CIRCUIT EVALUATION

Presenter
Presentation Notes
Many programming languages, specifically C++ and Java, have a useful feature called short circuit evaluation. The logical-AND and -OR operators are left associative – they are evaluated left to right. So, short circuit evaluation only evaluates as many left sub-expressions as necessary to determine the result of the overall expression.
For example, if sub-expression E1 is false, the full expression E1 && E2 must be false. Based on what we just learned from the truth tables, the program can make that determination without evaluating E2. We can take advantage of short circuit evaluation to create efficient but readable tests. For example, if n is 0, 100/n creates an arithmetic error. But n != 0 is false, so the program never evaluates the right-hand sub-expression that would cause the error.
Similarly, if E1 is true, the program “knows” the expression E1 || E2 is true without evaluating E2. The example jumps ahead a chapter but is nearly the same in Java. Let’s translate the expression into Java to better see how it works.



C++ JAVA

SHORT CIRCUIT EVALUATION (2)

if (s == null || s.length() == 0)

return;

• If s is null, then s == null is true

• if (true || s.length() == 0)

if (s == nullptr || s->length() == 0)

return;

• To translate to Java, change

• nullptr to null

• -> to .

Presenter
Presentation Notes
C++ and Java are similar enough that only two, small changes translate the C++ code into Java: change null-pointer to null and change the arrow operator to the dot operator.
Now, if “s” is a String and it is null, then “s.length()” will throw a NULPOINTEREXCEPTION. But, if s is null, then “s == null” is true, which means that the overall expression is true independent of the s.length() test. So, short circuit evaluation prevents the program from evaluating the right-hand expression. The logical-OR operator behaves the same way in a C++ program.



BOOLEAN TYPE: TRUE AND FALSE

• In C++ 0 is false and non-0 is true

• That means that numeric types and expressions can be used in control 
statements

• The bool data type, and true and false are a syntactic candy coating for ints 
(false = 0 and true = 1)

if (n % 2) // n > 0
cout << "n is odd\n";

else
cout << "n is even\n";

Presenter
Presentation Notes
While C++ and Java are similar in many ways, there is one significant difference between them. Java has a true Boolean data type, but C++ does not. The older C Programming language also doesn’t have a Boolean type, so it uses numeric values to represent true and false. Any zero value (integer, double, etc.) represents false, and any non-zero value represents true. C++ inherits this representation of Boolean values from C, and while C++ does have a type named “bool,” it’s just a syntactic candy coating for integers. So, the constants “false” and “true” are just synonyms for 0 and 1 respectively.
So, in C++, control-statement tests can use numeric-valued expressions directly, without using a relational operator. Alternatively, writing the same test in Java does require a relational operator. For example, n%2==1.



INCORRECT CORRECT

A COMMON ERROR

if (counter = 10)
. . .

if (counter == 10)
. . .

Presenter
Presentation Notes
Using numeric values to represent Booleans causes a common error in C++. A single ‘=’ character implements an assignment operation. So, in this example, the program assigns the value 10 to counter, making the test expression non-zero or always true. We must always use two ‘=’ characters to form a relational test for equality.



INCORRECT CORRECT

A COMMON ERROR

if (counter = 10)
. . .

if (counter == 10)
. . .

boolean running;
if (running = false)

Presenter
Presentation Notes
Java can detect this error most of the time. But suppose that “running” is a boolean variable, then Java also fails to detect the assignment error when a programmer only uses one ‘=’ character.


	Logical Expressions
	Two Kinds of Operators
	Understanding Logical Operators
	Short Circuit Evaluation
	Short Circuit Evaluation (2)
	Boolean Type: true and false
	A Common Error
	A Common Error

