
INTRODUCTION TO DATA 
STRUCTURES

Data structures contain and organize data

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Chapter 5 presents several loosely related features that allow programmers to extend the C++ language by creating new data types. The main features are related to data structures in general and to a C++ construct introduced by the “struct” keyword. Enumerations, introduced with the “enum” keyword are also introduced.
 
Data structures span a wide spectrum of complexity. Variables are, in a sense, very simple data structures. Arrays, which are covered in chapter 7, are only slightly more complex than “regular” variables and are also provided as primitives in most programming languages. Linked lists, trees, and other dynamic data structures lie at the other end of the spectrum. These data structures are too complex to be implemented as language primitives but are also too valuable to exclude, so they are often provided by a library or API. Structures and classes lie somewhere between these extremes: they are still simple enough that contemporary programming languages support them as primitives, but they require programmers to provide additional descriptive detail beyond a mere data type or a size.



DATA STRUCTURES

• Containers

• Contain other data and allow it to be manipulated with one name

• Data structures are like a basket

• Organizers

• Organize data for efficient access

• Characterized by the supported operations: insert, search, remove, visit

• “Data Structures and Algorithms” (CS 2420)

Presenter
Presentation Notes
Data structures contain and organize data. Think of a data structure as a basket. You can put all sorts of data into the basket and then carry all of that data by just holding onto the basket’s handle. Different data structures organize the data they contain in different ways. How data structures organize their data determines how easily and efficiently it is to insert new data, search for or remove a specific data item, or to examine each stored item. CS 2420 explores different data structures and their behaviors.



TYPE SPECIFIERS

• The name of a programmer-created data structure is a data type

• Data types are used to define variables or objects

• Examples:

• int counter;

• struct foo { . . . };

• foo my_foo;

• class bar;

• bar my_bar;

Presenter
Presentation Notes
When a programmer describes a structure or a class, it becomes a new data type in the describing program, or, formally, it becomes a new type specifier. Recall from chapter 1 that data types are an essential part of defining a variable. So, for example, we can define a new integer variable named “counter” by writing a variable definition statement that has the data type and the variable name.
 
Similarly, we specify a new structure with the “struct” keyword, a name, and some descriptive information. The descriptive information goes between the opening and closing braces, which we ignore for a few moments. Once our structure is specified we can make a new structure variable, also known as an object, just as we did the integer. Other than changing the “struct” keyword to the “class” keyword, specifying a class looks very much like specifying a structure, but we’ll see some differences when we explore classes later. Once we have specified a class, creating a class variable or object follows the same syntax used before to define any other kind of variable.


	Introduction to DATA Structures
	Data Structures
	Type Specifiers

