FUNCTION RETURN, PART 2

Returning structured data

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Now that we have a better understanding of the differences between pass by value, pass by pointer, and pass by reference, we are ready to revisit function return values. Previously, we studied return by value. In this section, we will learn that C++ can also return values by pointer and by reference. However, returning by pointer or by reference is generally not useful for returning simple data like integers or doubles; these return mechanisms are more useful when returning large amounts of structured data.

EXAMPLE DATA

struct part

{
char type;

int id;

Presenter
Presentation Notes
The following examples will use a simple structure to illustrate the behaviors of the different return mechanisms. But the concepts presented here apply equally well to arrays, which are introduced in the next chapter, and to instances of classes.
The structure has two fields, which is just enough complexity to illustrate the return concepts. The examples will also follow a simple pattern: one function, named supplier, will provide or supply a service to another function, named client. The supplier will always provide its service by returning a part object.

RETURN BY VALUE

part supplier () volid client ()

{ {
part a = { 'd', 10 }; part x = supplier();

return a;

Presenter
Presentation Notes
Return by value is the default return mechanism, and it works by copying the data from the called or supplier function to the calling or client function. The key to understanding return by value is that data is copied, byte by byte, from one memory location to another in the program.

RETURN BY POINTER:
LOGICAL ERROR

part* supplier /() vold client ()
{ {

part a = { 'd', 10 }; part* x = supplier();

return &a;

Presenter
Presentation Notes
Return by pointer is a useful return mechanism, but one that is easy to get wrong. Return by pointer is really just return by value, but the returned value is an address. In this example, variable a is an automatic variable whose memory is allocated automatically on the stack when the function runs and is deallocated automatically when the function ends. So the supplier returns the address of a, which is deallocated when the suppler ends. This leaves the client attempting to use deallocated memory. Some compilers will detect this problem and display a compile-time warning or error, but many compilers will miss it completely. And how the program behaves at runtime will vary from one operating system to another, or even from execution to the next.

RETURN BY POINTER:
CORRECT OPTIONS

STATIC DATA DYNAMIC DATA
part* supplier () part* supplier ()
{ {
static part a = { 'd', 10 }; part* a = new part;
a->type = 'd’';
return é&a; a->1d = 10;

return a;

Presenter
Presentation Notes
These two versions of the supplier illustrate two different ways of solving the return by pointer problem. The memory for a static variable is allocated when the program is loaded into memory and is not deallocated until the program ends; so, the address that the supplier returns is to memory that remains allocated.
Dynamic memory allocated with the new operator remains allocated until explicitly deallocated with the delete operator. So, again, the returned address points to memory that remains allocated after the function ends. Note the use of the address of operator in the return statement.

RETURN BY REFERENCE:
LOGICAL ERROR

part& supplier () vold client ()

{ {
part a = { 'd', 10 }; part& x = supplier();

return a;

Presenter
Presentation Notes
Although the two mechanisms are quite different, return by reference faces similar problems as does return by pointer. The compiler makes a reference by mapping two variable names to the same address. When the compiler generates machine code for a return by reference, it maps the variable in the client, to the same memory location as the local variable in the supplier. But the local variable is deallocated when supplier returns, leaving the variable in client referring to deallocated memory.

RETURN BY POINTER:
CORRECT OPTIONS

STATIC DATA DYNAMIC DATA
part& supplier () part& supplier ()
{ {
static part a = { 'd', 10 }; part* a = new part;
a->type = 'd’';
return a; a->1d = 10;

return *a;

Presenter
Presentation Notes
We correct the problem with return by reference just as we corrected the problem with return by pointer – using either the static keyword or the new operator. One important difference is that the pointer must be dereferenced in the dynamic memory version.

SPECIAL CONSIDERATIONS

STATIC DATA DYNAMIC DATA
If the function reads or calculates new Memory allocated with the new
data on each call, the data from the operator must be deallocated with the
previous call is overwritten delete operator

Therefore, previous data must be fully
processed before calling the function
again

Presenter
Presentation Notes
Solutions based on either static variables or dynamic data allocated with new, entail some additional considerations beyond what is required to implement return by value. In the example supplier function, the focus has been on understanding the syntax and the behavior of the returning mechanism, which is done with simple constant data. In a more realistic function, the function may be reading or calculating the data that is returned.
In the static data version of the supplier, each call to the function will cause the function to overwrite the data stored in the static variable, which means that the client must finish processing the data returned by the previous call before calling the function again.
The consideration with dynamic memory isn’t new at all (poor pun intended). Memory allocated with new must, at some point, be deallocated with delete or it will become garbage.

RETURNING NON-LOCAL DATA:
RETURN BY POINTER

part* supplier (part* a) vold client ()
{ {
a->type = 'd'; part y;
a->id = 10;

part* x = supplier (&y);

return a; }

Presenter
Presentation Notes
There is one other way to solve the problem of returning structured data from a function: Define the data in a different scope than the function scope. Specifically, define the data in a scope where it is not deallocated when the function returns.
One way of doing this is to define the data in the caller’s scope and pass it in to the function. In this example, the data, or variable a, is defined in the client function, passed by pointer into the supplier where it is populated, and then returned by the supplier. The return statement isn’t really needed because pass by pointer implements an input/output passing mechanism to begin with. Nevertheless, this technique is sometimes useful for certain kinds of data, for example, C-strings, which we learn about in the next chapter.

RETURNING NON-LOCAL DATA:
RETURN BY REFERENCE

part& supplier (parté& a) vold client ()
{ {
a.type = 'd'; part y;
a.id = 10;

part& x = supplier (y);

return a; }

Presenter
Presentation Notes
It’s also possible to pass and return data defined in the caller’s scope by reference. The syntax is similar to pass and return by pointer, and the underlying logic is identical.

RETURN BY REFERENCE FUNCTIONS
FORM AN L-VALUE

int main () supplier (p) = r;

{
part p; cout << p.type << " "
part r; << p.id << endl;
r.type = 'x'; return 0O;

r.id = 50; }

Presenter
Presentation Notes
Return by reference does have one rather unexpected result: the function call can appear on either side of the assignment operator! This example does little more than demonstrate the syntax. The example doesn’t do anything useful and is just an expensive way of assigning r to p, which overwrites the data stored in the structure by supplier. A similar operation is also possible with pointers but the syntax is a little more complicated.

	Function Return, Part 2
	Example Data
	Return By Value
	Return By Pointer:�Logical Error
	Return by Pointer:�correct Options
	Return By reference:�Logical Error
	Return by Pointer:�correct Options
	Special Considerations
	Returning Non-Local Data:�Return By pointer
	Returning Non-Local Data:�Return By Reference
	Return By Reference Functions�form an l-value

