
OVERLOADED FUNCTIONS

Two or more functions with the same name

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Functions are overloaded when they have the same name. Both C++ and Java support function overloading but the C programming language does not.



OVERLOADED FUNCTIONS

• Overloaded functions have the same name

• Are defined in the same scope

• Functions with the same name but defined in different scopes are not overloaded

• Must have at lease one unique parameter

• May have different return types, but that is not sufficient for an overload

Presenter
Presentation Notes
Specifically, overloaded functions describe the situation where there are two or more functions with the same name defined in the same scope. Functions defined in different scopes, for example, in different classes, are not overloaded. The only requirement for successfully overloading functions is that each overloaded function must have a unique parameter list. The function return types may be the same or they may be different; if the return types are different, the functions must still have distinct parameter lists.



VALID FUNCTION OVERLOAD

struct Time { . . .};

struct American { . . .};

void print(Time t) { . . . }

void print(American a) { . . .}

Time t;

American a;

. . . .

print(t);

print(a);

Presenter
Presentation Notes
This example illustrates two overloaded functions. Two structures are specified and two functions are defined on the left-hand side. On the right-hand side, an instance of each structure is defined and the two overloaded functions are called. The compiler can distinguish which function is called based on the different arguments. Overloading works in the same way for instances of classes and for simple data types like integers and doubles.



MORE VALID FUNCTION OVERLOADS

int function(double x, double y, double z, Time t, int a, int b, int c);

int function(double x, double y, double z, American a, int a, int b, int c);

Presenter
Presentation Notes
Functions may have many parameters. In this example, all the corresponding parameters are the same type, and are therefore insufficient for overloading the functions, except the two highlighted in red. A function override requires just one pair of corresponding parameters to be different.



INVALID FUNCTION OVERLOAD

void print(Time t) { . . . }

void print(Time& t) { . . . }

void print(Time* t) { . . . }

. . . .

Time now;

print(now);

print(&now);

int func(double x){. . .}

double func(double x) {. . .}

func(3.14); // which one

Presenter
Presentation Notes
It’s not possible to overload two functions based on the difference between pass by value and pass by reference, because the function calls for the two passing techniques are identical. But it is possible to overload on pass by pointer versus either of the other two because the function call for pass by pointer is sufficiently different than the other two. Nor is it possible to overload on the function return type. It is legal to ignore a function’s return value, so there isn’t sufficient information for the compiler to distinguish which function is called.



TYPE PROMOTION VS.
FUNCTION OVERLOADING

void f(double x) { . . . }

f(10);

f(10.0);

void f(int x) { . . . }

void f(double x) { . . . }

f(10);

f(10.0);

Presenter
Presentation Notes
Overloading functions can change the behavior of a function call. In the first example, with just one function, the integer value 10 is automatically promoted to a double value to satisfy the requirements of the function call. In the second example, with two overloaded functions, each call runs a different function. The first call invokes the function with an integer parameter, while the second call invokes the function with a double parameter.


	Overloaded Functions
	Overloaded Functions
	Valid Function Overload
	More Valid Function OverLoads
	Invalid Function Overload
	Type Promotion vs.�Function Overloading

