FROM DOCUMENTATION TO
PROGRAMS

Using technical documentation to write programs

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
Although knowing how to search online for basic programming information, examples, and videos is a common practice and a crucial skill, learning to read and use technical documentation is still essential for all practicing computer scientists. Programmers who habitually rely on YouTube videos to complete a program are inefficient and can never achieve their full potential. Furthermore, programmers working on sensitive projects may work in environments without Internet access.



COMMON DOCUMENT SECTIONS

Function Name
Prototype
Header File
Brief Description
Input

Return Value
Example

Related Docs

cplusplus.com

Function

Follows function
Follows function
Derived - function
Parameters
Return Value
Example

See also

Microsoft

Unlabeled
Syntax
Requirements
Unlabeled
Parameters
Output

Example
See Also

Unix / Linux

Name

Synopsis

Synopsis
Description
SPECIAL VALUES
N/A

N/A

See Also



Presenter Notes
Presentation Notes
Documentation comes in many formats from different vendors. Nevertheless, it usually contains similar information describing functions, classes, and structures. The table illustrates some information included in standard documentation, focusing on functions for now.
The first column summarizes the contained information, while the remaining columns describe the section header names appearing in three representative documents. Of these, the prototype is universal and the most important. It fully characterizes the function's name, parameters, and returned value type – the critical information needed to use it in a program. So, we begin with two prerequisite concepts frequently encountered in library function documentation.


http://www.cplusplus.com/reference/cmath/pow/
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/pow-powf-powl
http://www.manpagez.com/man/3/pow/

TYPE ALIASES:
PORTABLE DATA TYPES

C++ is deliberately vague about the size and sign of some data types

C was designed as a partial replacement for assembly, so it is tied to hardware more
than other languages — the ANSI standard calls this “implementation dependent”

Type aliases
usually end with _t

I”

are replaces with “real” types by the compiler
typedef size t unsigned int

typedef size t unsigned long



Presenter Notes
Presentation Notes
Symbolic constants make programs more human-readable by replacing "magic numbers" with meaningful names. Similarly, type aliases make programs more readable by replacing general data type names with names suggesting the type's role in a program. For example, C and C++ are deliberately vague about the size and sign of some specific data types. C was designed, at least in part, as a partial replacement for assembly language. To run most efficiently on a given hardware platform, the size of an integer is the hardware's word size, which can vary from one computer to the next. The ANSI standard calls these features "implementation dependent."
Programmers make their programs more portable and readable by using type aliases. The compiler replaces the aliases with types appropriate for a given system. Returning to the size example, we often see the alias size_t in programs and documentation. The compiler may replace it with unsigned int on some systems and unsigned long on others. errno_t is another alias representing error codes. When readers see variables defined as size_t or errno_t, they know what the saved data represents. There are many of these type aliases, but they are all recognized by ending with an _t.



TYPE ALIAS EXAMPLE

size_t strlen(const char* str);

int main()
{
char* s = "Hello world");
for (size t i = 0; i < strlen(s); i++)
cout << s[i] << endl;
return 9;



Presenter Notes
Presentation Notes
One C++ representation of a string is as a character pointer. We'll learn more about strings in a few chapters, but the strlen function is simple enough to demonstrate type aliases. The prototype tells us that the function takes a C-string argument and returns its length as the alias size_t. This typical example defines the loop control variable, i, as type size_t, matching the return type of the strlen function. The loop prints the string's characters individually on separate lines.



ERROR REPORTING

int main () Four bit patterns are not numbers

{
+ -
double x = Sqrt(—2); +NaN — Not a Number

INF — infinity
if (errno != 0)
errno
cout << errno << endl;
else int

EDOM — domain error
return 0O;

) perror(“sqrt error");

sqrt error: Domain error


Presenter Notes
Presentation Notes
Modern object-oriented programming languages typically throw an exception when they detect an error. However, C++ inherits many functions from C, a non-object-oriented language. Our experience with the sqrt function makes it a good choice to help us understand the older error-reporting methods. Its domain or valid arguments are non-negative real numbers. If a program calls it with a negative number, it doesn't "crash" but returns a value indicating an error. The IEEE 754 floating point standard specifies how computers represent floating point numbers and defines a few values representing anomalous conditions. The sqrt function returns an anomalous value, -NaN or not a number, when its argument is less than zero; the minus sign indicates the error results from a negative input. When the program prints the value saved in x, it displays "-NaN" on the console.
A computation with NaN produces another NaN, propagating the error through subsequent operations. If the program doesn't print the result but continues with further calculations, the error may go undetected, wasting computation time. When the square root function detects the error, it stores a numeric error code in the global variable "errno," defined in the system runtime code. Modern versions of C++ define "errno" as either type "int" or type "errno_t" and provide several symbolic constants naming the error codes. In this example, the function sets errno to EDOM, meaning "domain error," where a program can check it with a simple if-statement.
The values assigned to specific errors are arbitrary and convey little meaning on output. The program can add descriptive messages to the output, but this makes writing generic error reporting difficult. A library function named "perror," short for print error solves the problem. Its argument is a programmer-supplied string. When it runs, it prints the string followed by a brief message describing the error.



SIMPLE FUNCTIONS

double pow (double base, double exponent); base®xponent
double pow (double x, double y); X

The result of raising base to the power exponent.

cout << pow(3.14159, 2.0) << endl;
double result = pow(h, 2);
double payment = p * r / (1 - pow(l + r, -n));



Presenter Notes
Presentation Notes
The pow function provides a typical example of a simple function's prototype. Different documentation sets use different names for the arguments. Some names better describe the arguments' roles in the function than others. Nevertheless, the names are not significant in the prototype, but the number and the type of the arguments are. The prototypes illustrate the function taking two double arguments and returning a double value. The arguments are passed by value or copy, meaning that a program can use expressions as arguments. The comma separates and groups the two arguments, making additional parentheses unnecessary.



STRUCTURE ARGUMENTS
(WINDOWS VERSION)

#include <sys/timeb.h>
errno t ftime s(struct timeb* timeptr);

struct timeb* start; // error!!
_ftime s (start);

struct timeb start; // correct, windows
_ftime s (&start);



Presenter Notes
Presentation Notes
The last example demonstrates a more complex function call and highlights an easily made error. Programs communicate directly with the operating system through system calls, which look like ordinary functions. However, different operating systems support different system calls, sometimes with similar names and other times very different. This example demonstrates a Windows system call, but Unix and Linux historically included a similar function.
The prototype illustrates several documentation features:
The return value type is the type alias errno_t, signaling to programmers the purpose of the returned value.
timeb is a structure specified in the sys/timeb.h header file. ftime is an old system call that predates C++ and follows the C language syntax. When defining a structure variable, C requires the "struct" keyword as part of the definition.
The function retrieves information about a file from the operating system and saves it in the structure, suggesting the program must pass the structure with an INOUT method. The prototype indicates that the argument is a pointer to a structure, tempting us to define the structure as a pointer in the client program.
But the correct way to use ftime is to create a structure in the client program and pass its address to the function.
Using language documentation is a skill learned through frequent practice.



	From Documentation to Programs
	Common Document Sections
	type aliases:�Portable Data Types
	type alias example
	Error Reporting
	Simple Functions
	Structure Arguments�(Windows Version)

