
C++ VS. JAVA

C++ arrays are a primitive data type

Java arrays are objects

Delroy A. Brinkerhoff

Presenter
Presentation Notes
At the conceptual level there's no difference between arrays in C++ and Java, and notationally the two languages are quite similar. But there are some significant differences between how the two languages treat arrays and understanding those differences is crucial to avoid making some nasty errors. The differencs in the behaviors of arrays bewtween the two languages are attributable to how the two lananguages implement arrays: in C++ an array is a primitive datatype, while in Java an array is an object (an instance of an unnamed class).

TRACKING THE SIZE

• Java arrays have a length attribute (instance field)

• int[] scores = new int[10];

• scores.length

• C++ arrays are really pointers – they do not have attributes or fields

• Track the size with a (named) constant

• const int size = 10;

• int scores[size];

Presenter
Presentation Notes
The first difference between C++ and Java is how they track the maximum size of an array. Being an object, a Java array may have an attribute or an instance field, specifically a field named "length." This feature allows a Java array to encapsulate two distinct values: the array elements and the size of the array. On the other hand, an array in C++ is a primitive datatype and therefore cannot maintain both the array elements and the size of the array in a single variable. Although the Java notation of ".length" is both common and convenient, it is not supported by C++ arrays. In place of the Java length instance field, we must use a separate constant value.

BOUNDS CHECKING

• Java checks each array index, throws an exception if the index is out of bounds

• scores[i], throws an exception if i < 0 or if i ≥ 10

• C++ does not check any array index

• scores[-1] or scores[10] will crash the program or corrupt adjacent data

0 1 2 7

10

3 4 5 6 8 9

Presenter
Presentation Notes
The second difference between the two languages is not visible in the code in any way. Instead, the difference is in the fundamental behaviors exhibited by arrays in the two languages. Arrays in both languages are said to be "zero indexed," which means that the first legal index value begins at zero and the last legal index value is one less than the maximum size of the array. The question is, "What happens if an index value less than zero, or greater than or equal to the size of the array is used?" This common error is called "indexing an array out of bounds." Java will detect this error and terminate the program. What happens in C++ is a little more ambiguous. The operating system grants memory to every program in which it can run. If indexing an array out of bounds causes the program to access memory that has not been assigned to it, then the operating system will terminate the program. On the other hand, if the out of bounds array access stays within the program's memory, then the ultimate behavior depends on how the array is being used. If the array index operation appears on the right-hand side of the = (i.e., the operation is getting a value out of the array) then the operation may return an unspecified value (i.e., "garbage"). If the index operation was an assignment (i.e., the operation appears on the left-hand side of the assignment operator), then the operation can corrupt data stored in other variables. (The textbook illustrates this error with a simple program.)

JAVA: ARRAYS OF OBJECTS

Presenter
Presentation Notes
The third and final difference between the two languages is not as important to us now as the first two differences. Java only has one way of creating an array of objects. If you don't recall from CS 1400 how classes, objects, and constructors work, don't worry about the details for now as these concepts will be introduced in a subsequent chapter. Creating an array of objects in Java requires two separate phases: in phase 1 we create the array and in phase 2 we use a for-loop or some other iterative method to create each object one at a time.

C++: AUTOMATIC ARRAYS OF OBJECTS

emp

Employee emp[5];

Presenter
Presentation Notes
As we have seen previously, C++ provides multiple ways of performing the same operation. Which way we choose is ultimately decided by the problem that the program solves. The first and easiest way of creating an array of objects is to do so as an automatic array. The syntax demonstrated here assumes that the class has a default (i.e., no argument) constructor.

C++: DYNAMIC ARRAYS OF OBJECTS

emp

Employee* emp;
emp = new Employee[5];

Presenter
Presentation Notes
The second alternative is to create the array dynamically on the heap using the new operator. Again, the syntax illustrated here assumes that the class has a default constructor.

C++: ARRAY OF POINTERS TO OBJECTS

emp

Employee* emp[5];
for (int i = 0; i < 5; i++)

emp[i] = new Employee;

Presenter
Presentation Notes
The third alternative is very similar to the approach taken by Java. This code first creates an array of pointers and then uses a for loop to create each object one at a time. This syntax may be used with any constructor.

C++: POINTER TO AN ARRAY OF
POINTERS

emp

Employee** emp;
emp = new Employee*[5];
for (int i = 0; i < 5; i++)

emp[i] = new Employee;

Presenter
Presentation Notes
The fourth and final option is to create a pointer to a pointer, then create an array of pointers, and then use a loop to create the objects individually. This syntax is a little strange but it is sometimes useful when we want to return an array created dynamically from a function.

	C++ vs. Java
	Tracking the Size
	Bounds Checking
	Java: Arrays of Objects
	C++: Automatic Arrays of Objects
	C++: Dynamic Arrays of Objects
	C++: Array of pointers to Objects
	C++: pointer to an Array of Pointers

