ARRAYS AND LOOPS

For-Loops and Arrays

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
Loops are natural control statements to use with arrays because they allow programmers to perform repetitive operations with each array element.



FOR LOOPS AND ARRAYS

One loop for each array dimension

C++ arrays are zero indexed: start the
loop control variable at 0 using <

When using loops with multi-dimensional
arrays, be sure to match the loops and
the indexes correctly

int test[10];

i < 10; 1i++)
<< endl;

(int 1 = 0;
cout << test[i]

for

float test score[1l0][4];

(int 1 = 0; 1 < 10; 1i++)
for (int 7 = 0; 3 < 4; J++)
cout << test scorelil] []]

for

<< endl;


Presenter Notes
Presentation Notes
For loops are especially useful with arrays because the loop control variables can be used as array indexes. Notice that there is typically one for loop for each dimension of the array. If we initialize the loop control variable to 0 and use a strict “less than” in the loop control test, we can easily work from the first element of the array to the last. That is, the sequence of values assumed by the loop control variable nicely matches the index values that are within bounds for the array. When working with multidimensional arrays it's important to ensure that the loops and the array indexes are correctly matched. In this example it's important to match the loop that goes from 0 to 9 with the array index that has a size of 10, similarly the loop that goes from 0 to 3 must match the array index that has a size of 4.



ARRAYS AND DATA

The size of an array is fixed at the time that the array is created

How large should we make an array when we don’t know much data it must
store!?

Design for the worst case and add a safety margin
Some array elements at the end will be unused
Count how many data items are inserted into the array

Use the counter to control for loops



Presenter Notes
Presentation Notes
Once an array is created, its size cannot be changed. So, in those cases when we don't know how much data will ultimately be stored in an array, how do we determine how large to make the array when we create it? Software engineers use a technique that is common to many engineering disciplines: we design for the worst-case scenario and then add a safety margin. In the case of arrays, that means that we make the array as large as the largest data-set we anticipate storing and then we add a little extra just to be safe. How much extra? Unless you're programming in a very specialized environment (e.g., programming for a car or a refrigerator), memory is plentiful and relatively cheap, so be generous.
 
If we make our array larger than the amount of data that we are likely to store, then there will be unused elements between the end of the data and the end of the array. The values stored in these unused array elements will be unspecified or "garbage," which is okay because we will simply ignore them. How do we ignore them? We must count the data values as we store them in the array and then use the count to control the loops that manipulate the arrays.



ARRAYS & UNKNOWN DATA VOLUME

INPUT USE / OUTPUT

int scores[100]; for (int 1 = 0; 1 < count; 1i++)
int score; cout << arrayl[i] << endl;
int count = 0;
cout << "Enter a score (-1 to stop): ";
cin >> score;
while (score != -1)
{

scores|[count++] = score;

cin >> score;


Presenter Notes
Presentation Notes
For loops work really well when we have a known value to use in the middle or test expression. Either a while loop or a do-while loop is often preferred when a different kind of test is used to control the loop. (Of course it's possible to convert a while loop into a for loop and vice versa, so the difference is really little more than how we structure the code and is largely a matter of personal taste.) The while loop demonstrated on the left reads in a sequence of non-negative integers. It counts the integers and stores them into adjacent array elements. The input loop ends when the user enters a -1.



	Arrays And Loops
	For Loops and Arrays
	Arrays And Data
	Arrays & Unknown Data volume

