
THE PALINDROME-NUMBER 
PROBLEM

Determining if a string is a palindrome

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Our next programming demonstration features another puzzle, which we solve first using C-strings and later with instances of the string class. In this section, we focus on understanding the problem and the solutions, and then program the C-string version in the next section.




THE PROBLEM

• Find the smallest positive integer that when squared produces

• a palindrome

• of at least 6 digits

• that does not begin or end with a 0

• Work with numbers until the squaring operation is done, then convert the 
number to a string for testing

Presenter Notes
Presentation Notes
The puzzle, which forms our problem, is to find the smallest positive integer that when squared produces a sequence of digits that form a palindrome that is at least six digits long and does not begin or end with a zero. We’ll use integers while we identify a candidate number and square it but then convert the integer to a string and use string functions to verify that the puzzle conditions are met.




SOLUTION OUTLINE

• Generate a list of candidate numbers

• Square the number

• Convert the squared number to a string

• Use string operations to verify that the squared number satisfies the puzzle 
requirements

• Squared number is at least six digits long

• Squared number does not begin or end with a 0

• The digits of the squared number form a palindrome

Presenter Notes
Presentation Notes
Breaking down a large problem into smaller steps or sub-problems can help us overcome the complexity of the full problem by seeing it as a set of smaller problems, each of which is less difficult than the full problem. Doing this also helps us form an overall architecture or organization for the program that we are about to write. We’ll organize our solution into four main tasks.
Our first task is to generate a consistent list of candidate numbers. We’ll start with 1 and then count upward until we find a number that satisfies all the requirements of the puzzle. Next, we’ll square each candidate number, and third, convert the squared number into a string. The fourth and final task is verifying that the squared number satisfies the puzzle requirements, which we will do using string operations.
Insuring that the squared number is at least six digits long and does not begin or end with a 0 is quite easy, so we focus our attention on identifying a palindrome. Wikipedia offers the following definition: “A palindrome is a word, phrase, number, or other sequence of characters which reads the same backward as forward.” We’ll use that definition to create two algorithms to determine if the squared number is a palindrome.




PALINDROME ALGORITHM 1

• Imagine the string written on a whiteboard

• Short palindromes are easily spotted

• Long palindromes require a systematic test

• Copying or rewriting is undesirable

• Keep testing as long as the characters match

a b c d c b a

a b c d c b a

a b c d c b a

Presenter Notes
Presentation Notes
For the first algorithm, imagine that the string is written on a whiteboard. If the string is short, it’s easy to see if it is a palindrome or not, but as the string becomes longer, it becomes more difficult to tell. At some point, the string will become too long to verify by visual inspection alone and a more systematic approach becomes necessary.
If the string is written on a whiteboard, we want to avoid copying or changing the string as much as possible because these are tedious steps for long strings. But we could easily point to the first and last characters in the string and see if they are the same. (We may need long arms if the string is long, but we ignore that detail for now.)
If the first and last characters are the same, we move our left finger to the right one character and our right finger left by one character. If the two characters under our fingers are the same, we repeat this process. We continue this process until we find two characters that don’t match or until our fingers meet in the middle of the string.
If we have an odd number of characters, as we do in this example, we ignore the character in the middle. If we have an even number of characters, then the process ends with our two fingers next to each other in the middle of the string. There is no advantage to allowing our hands to cross and to continue to the ends of the string.




ALGORITHM 1, CONTINUED

• A matched characters do not establish a 
palindrome

• But mismatched characters do establish a 
non-palindrome

• A palindrome is established only if our 
fingers meet in the center of the string

a x c d c y a

a x c d c y a

Presenter Notes
Presentation Notes
Finding two characters that match is not sufficient to assert that the string is a palindrome, but if we find two characters that don’t match, then we know that the string isn’t a palindrome. We correctly identify a palindrome only when our fingers meet in the middle of the string.




PALINDROME ALGORITHM 2

a x c d c y a

a x c d c y a

a y c d c x a

s

r

r
reverse

co
py

Presenter Notes
Presentation Notes
Let’s develop a second algorithm but this time we’ll assume that the string is stored in a variable in a computer program. This assumption implies that we are more able to manipulate the string since we are not imagining copying or modifying it by hand on a whiteboard.
The second algorithm is based on the definition of a palindrome: sequence of characters that read the same backward and forward. We’ll copy our candidate string, s, to form a new string called r. Then we reverse string r. If the two strings are the same, that is, if the two strings are equal, then s is a palindrome; if the two strings are not the same, then s is not a palindrome.
While the two algorithms look quite different, when programmed they will share some essential code.




PROGRAM LOGIC

number = 1 square =
number * number

length(s) < 6?s = string(number)

number =
number + 1

does s begin or 
end with 0?

is s a 
palindrome?

Start

print number

yes

End

no

no

yes

no

yes

Presenter Notes
Presentation Notes
Finally, let’s develop the overall logic for solving the problem. Please be aware that this is a logic diagram and so the statements written inside the boxes are in pseudo code and not in any specific programming language.
We begin by systematically generating a sequence of candidate numbers beginning with 1, and squaring each candidate by multiplying it by itself. Next, we convert the squared number into a string. Now we can use string functions to test the number to see if it satisfies the three constraints specified by the puzzle.
We could perform the tests in any order, but if we are a bit clever in how we order the tests, we can make our program more efficient. We want to do the easiest and fastest test first. If the number fails that test, that is, it doesn’t satisfy one of the puzzle requirements, then there is no reason to waste computer time by doing the other two tests – we should just skip the subsequent tests and select a new candidate number.
Testing the squared number to see if it has at least six digits is simple and so we do that test first. If the number fails this test, we increment the candidate and start over. But if the squared number is six digits long or longer, then we do the next text. Does the number begin or end with a 0? If it does, we increment the candidate and start again, otherwise, we move to the next test.
Testing a number to see if it’s a palindrome is the hardest test, so we do it last. We can perform the test with either palindrome algorithm developed previously.
Before we leave the logic diagram, note that we have a cycle in the center. We can program this cycle with any of the C++ loops – but since we have an initialization and an increment, I’ll program this with a modified for-loop that will rely heavily on the break and continue operators.



	The Palindrome-Number Problem
	The Problem
	Solution outline
	Palindrome Algorithm 1
	Algorithm 1, continued
	Palindrome Algorithm 2
	Program Logic

