COMMAND LINE ARGUMENTS

Command Line Interface (CLI)

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The command line was a once familiar aspect of computer use, but today many computer users have grown up exclusively using a graphical user interface or GUI (pronounced “gooey”). This short video introduces the basics of using a command line interface or CLI, and accessing the command line arguments from within a C++ program.

INTERACTIVE COMPUTER INTERFACES

GUI CLI
Graphical User Interface Command Line Interface
Windows with Commands are entered as text or strings
a pointing device for selecting A program (e.g.,Command Prompt” or a shell)

icons, menus, buttons, etc. Allows the user to enter and edit commands

a keyboard Reads and interprets the command or runs a

text program

Converts non-text elements to an appropriate type

Presenter Notes
Presentation Notes
Modern computers typically support three different user interfaces or ways that users can control computer operations: a graphical user interface, a command line interface, and batch interface.
Graphical user interfaces allow users to select programs and data with an intuitive pointing device such as a mouse. GUIs represent programs, data, and actions with abstract elements such as icons, menus and buttons. A keyboard permits textual data input in all but very specialized computers.
When a user interacts with a computer through a command line interface, all of the information is exchanged as a strings of characters, which are written, or read and processed by a command line processor. Command line processors vary from one operating system to another: They are called a Command Prompt on Windows computers or a shell on Unix and Linux systems.
The exchange begins when the computer displays a prompt on the console indicating that it is ready for input. The command line processor allows the user to enter and edit a single-word command, which may have zero or more arguments. The processor reads the command and breaks it down into a sequence of separate strings: one string for the command and zero or more strings for the arguments. Some arguments are appropriate to leave as a string, for example, the name of a file; other arguments may need to be converted to other data types, for example a temperature or size of an array.
Some commands are simple enough that the processor is able to interpret and carry out the command itself. Other commands may represent a program that the user wishes to run.
A batch interface consists of batch files or shell scripts, which are sequences of CLI commands and simple programming operations.

ARE CLI’'S OBSOLETE?

Maybe they are for some end users

CLlIs are important for computer professions
lcons in a GUI are wrapper for a CLI.
Operating systems use a CLI whenever they run a program
Some programs do not have a GUI
Servers

Utilities

Presenter Notes
Presentation Notes
Many might wonder if CLIs are not obsolete today. I think that for some users CLIs probably are no longer important. But I believe that it is still important that computer professionals understand and are able to use CLIs for a number of reasons. For example, the icons that serve as metaphors for programs in GUI’s are really just wrappers for command line information, which includes the full path name for the program, and might also include program arguments and switches or options. Also, operating systems pass information into programs through the CLI regardless of which interface is used. Furthermore, there are some programs that do not have a graphical user interface; these include servers that don’t directly interact with users and some utilities – though admittedly, the number of utilities without a GUI is shrinking.

COMMAND LINE: USER SIDE

Presenter Notes
Presentation Notes
The Windows console, the Command Prompt, is an example of a command processor or CLI. By default, the prompt includes the current working directory and ends with the greater than symbol. In this example, the command is the name of a program called “name_box,” which is written and demonstrated in the next video. Finally, the name “Cranston Q. Snort” comprises three arguments that are passed into the program.

COMMAND LINE: SYSTEM SIDE

C:\Users\dab\>name box Cranston Q. Snort

main (int argc, char* argv][])

argc argv
4 0 —t——>» nlalm|e| _|blo|x]|\O
1 ——>» C|r|la|n|s|t]|o|[n]|\O
2 —>» Q \O
3 ——>» S|{n|o|r|t]|\O

4 | nullptr

Presenter Notes
Presentation Notes
We can access the command line and its arguments in a C++ program through function arguments added to function main. The order and the type of the arguments are fixed and cannot be changed, but the names of the arguments are, like all function argument names, at the discretion of the programmer. Nevertheless, the names argc and argv are the traditional command line argument names and I encourage you to use them unless there’s a compelling reason to use other names.
The command line processor parses or breaks up the command line based on the spaces between each word. In the example, repeated from the previous slide, the entire command line consists of four separate words or components: the command and three command arguments. argc, short for argument count, stores the number of words or parts of the full command, which is 4 in this example. argv stands for argument vector, where vector is just another name for an array. argv is an array of character pointers, that is, it is an array of C-strings. Each element in argv is a null-terminated C-string that contains one part of the command line. The last element of argv is assigned the value NULL to provide options for how the command line information is processed.
When the operating system runs a program, it passes the command line information to the program through argc and argv; that is, it is the operating system that places information into argc and argv.

	Command Line Arguments
	Interactive Computer Interfaces
	Are CLI’s Obsolete?
	command Line: User Side
	Command Line: System Side

