
BULLETPROOF CODE:
STRING → NUMBER CONVERSIONS

Part 1

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Bulletproof code is code that catches or detects data input errors rather than failing. Specifically, the errors that result when the user enters the wrong type of data. Bulletproof code doesn’t read the user’s mind and change bad data into good, but it does detect and report the error. And, instead of crashing or experiencing a softer failure, it either gracefully terminates the program or allows the user to reenter better data.We’ll treat this topic more broadly at the end of the semester, but for now we look at the specific problem of entering and validating numbers. Our approach is to initially input numeric data as a string, verify that it is in the correct format, and then convert it into a number.



DATA INPUT ERROR:
TYPE MISMATCH

• ANSI requires that correct programs always behave the same on all systems

• Incorrect programs have no guarantee

• If the user enters data whose type does not match the input type

• Input will not be interpreted correctly

• Program will often fail – perhaps crash

• Program results may be inconsistent

Presenter Notes
Presentation Notes
A correct program will always behave the same on all systems, but the behavior of incorrect programs is unpredictable. Incorrect programs can behave differently at different times and on different systems. A special case of this problem is how a program responds if the user enters data whose type does not match the type of data that the program expects. An undetected type mismatch will generally result in a program using an incorrect value, often cause the program to fail in some way (maybe even crash or loop infinitely), and may produce results that are not consistent over time or systems.



SIMPLE PROGRAM

int main()
{

int input;
cout << "Please enter an integer: ";
cin >> input;

cout << input;

return 0;
}

Presenter Notes
Presentation Notes
A simple example will help clarify what I mean by a type mismatch and how a program’s behavior might be inconsistent. The program mainly consists of a now-familiar pattern of variable definition, prompt, and data input. Once input, the data is echoed back to the console. The important detail to note is that the data type of the input variable is an int.



ENTERING A STRING WHERE
AN int IS EXPECTED

D:\>bulletproof

Please enter an integer: hello

4194048

D:\>

D:\>bulletproof

Please enter an integer: hello

2096640

D:\>

Presenter Notes
Presentation Notes
When the program runs, it requests an integer as input. What happens if the user enters data that is clearly not an integer? Well, that depends. On some systems this error may crash the program – that is, cause a runtime error that aborts the program. On my test system, the program printed a mysterious, seemingly arbitrary, number. What’s more, running the program a second time and entering exactly the same data caused the program to print a different number. That number, I believe, is the memory address of the data.



BULLETPROOF CODE

• Does NOT crash

• Catches the input error

• Displays a diagnostic

• Gracefully terminates the program or allows the user to reenter the data

Presenter Notes
Presentation Notes
We want to write code that does not crash or fail when this kind of data input error takes place. Instead, good code, bulletproof code, should catch the error, display an error message or diagnostic, and gracefully handle the problem by terminating the program or giving the use a chance to correct the problem.



ALL DATA MAY BE REPRESENTED
AS A STRING

• Bulletproof code reads all input as a string

• Verifies the input data has the correct format

• Regular expression (RE) – beyond the scope of this course

• Character-by-character tests (can be difficult)

• Verified data is converted from a string to the expected type

Presenter Notes
Presentation Notes
What we need is some kind of universal data type – a data type that can represent and store any possible data in any possible format. Strings, sequences of printable characters – any printable character – are just that – a universal data type.Bulletproof code initially inputs all data as a string. The code then verifies that the string, specifically every character in the string, is appropriate for the type of data that the program expects. Regular expressions are a very compact, efficient way of verifying data, but they are a little advanced for us right now and are beyond the scope of this course. For now, we’ll write code that explicitly checks each character in the string. Once the data is verified, it is converted from a string to a numeric value.



DATA INPUT AND CONVERSION:
C++ STRING CLASS

int main()
{

string    input;
cout << "Please enter an integer: ";
getline(cin, input);

for (size_t i = 0; i < input.length(); i++)
if (!  isdigit(input[i]))
{

cerr << "Invalid integer: " << input << endl;
exit(1);

}
cout << stoi(input) << endl;
return 0;

}

Presenter Notes
Presentation Notes
The example program illustrated here is based on the C++ sting class and demonstrates the input, verification, and conversion process. To fit the code on a single side, some detail (such as the included header files) is omitted here; please see the text for those details.The program requests the user to enter an integer, but the program reads and stores the input as a string. A for-loop walks the string examining each character. The “isdigit” function returns “true” if its parameter is an ASCII digit, that is, in the range of a character ‘0’ through a character ‘9’. If the parameter is not a digit character, “isdigit” returns false, which causes the program to print an error message and terminate. If every character in the string is a digit character, the “stoi” function (short for “string to integer”) converts the string to an int. For simplicity, the program does not allow a dash or minus character to indicate a negative number.



DATA INPUT AND CONVERSION:
C-STRINGS

int main()
{

char    input[100];
cout << "Please enter an integer: ";
cin.getline(input, 100);

for (size_t i = 0; i < strlen(input); i++)
if (!  isdigit(input[i]))
{

cerr << "Invalid integer: " << input << endl;
exit(1);

}
cout << atoi(input) << endl;
return 0;

}

Presenter Notes
Presentation Notes
This program is like the previous one but is based on C-strings. The C-string conversion function “atoi” (short for ASCII to integer, where ASCII is a synonym for C-string) performs the task of converting the string to an integer. Otherwise, the two programs are logically the same.



CORRECT INPUT

D:\>bulletproof

Please enter an integer: 123

123

D:\>bulletproof

Please enter an integer: hello

Invalid integer: hello

INCORRECT INPUT

PROGRAM BEHAVIOR

Presenter Notes
Presentation Notes
Regardless of the kind of string underlying the program, both programs exhibit the same behavior, which is illustrated here: a valid integer prints without error, while an invalid integer causes a diagnostic and program termination.


	Bulletproof Code:�string → number conversions
	Data Input Error:�Type Mismatch
	Simple Program
	Entering A string where�An int is expected
	Bulletproof Code
	All data May be represented�as a string
	Data Input and Conversion:�C++ string class
	Data Input and Conversion:�C-strings
	Program Behavior

