
SOFTWARE DEVELOPMENT:
THE ANAGRAM PROBLEM

Strings, Arrays, And ASCII Conversions

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The next demonstration is an extended example of the software development process: we begin with a problem, solve it more or less independently of a programming language, and finish by programming the solution. The anagram problem brings together many concepts from the current and previous chapters: functions, strings, arrays, and the ASCII code. The problem’s reliance on strings suggests that we couldn’t explore it before now, but I believe that its most interesting feature is related to arrays.

SIMPLE ANAGRAM

• “An anagram is a word or phrase formed by rearranging the letters of a
different word or phrase, typically using all the original letters exactly once.”

• https://en.wikipedia.org/wiki/Anagram

• Simple example:

• See the quick red fox jump over the lazy brown dog.

• abcddeeeeeefghhijklmnoooopqrrrsttuuvwxyz

Presenter Notes
Presentation Notes
An anagram is a word or phrase formed by rearranging the letters of a word or phrase. While not everyone completely agrees about the “rules” of making an anagram, typically the letters in the original word or phrase are used exactly once: no letters are left out and no new letters are introduced.
For example, we can take the phrase, “See the quick red fox jump over the lazy brown dog” (famous because it uses every letter in the alphabet at least once) and create the simple anagram illustrated here. Admittedly, this anagram isn’t very interesting.

https://en.wikipedia.org/wiki/Anagram

CLEVER ANAGRAM

• Letter case (upper vs. lower), spaces, and punctuation are not considered

• Short

• Dormitory

• Dirty Room

• From someone with way too much spare time:

• To be or not to be: that is the question, whether its nobler in the mind to suffer the
slings and arrows of outrageous fortune.

• In one of the Bard's best-thought-of tragedies, our insistent hero, Hamlet, queries on
two fronts about how life turns rotten.

Presenter Notes
Presentation Notes
A cleaver anagram creates a rearrangement that is also a meaningful word or phrase, often related in some humorous way to the original. As a short example, the word “Dormitory” can be rearranged to form the phrase “Dirty Room.”
Demonstrating that some people have way too much time on their hands, the famous Shakespearean quotation “To be or not to be: that is the question, whether its nobler in the mind to suffer the slings and arrows of outrageous fortune” can be rearranged to form “In one of the Bard's best-thought-of tragedies, our insistent hero, Hamlet, queries on two fronts about how life turns rotten.”

THE BASIC ANAGRAM PROBLEM

• Prompt the user to enter two strings. The second string is potentially an
anagram of the first

• Input the two strings into two variables input1 and input 2

• Test the two strings to see if they form an anagram

• Print a simple message stating that the string are or are not an anagram

Presenter Notes
Presentation Notes
We begin by stating our basic problem in very general terms:
The anagram problem requires the user enter two strings: input1 and input2; the program tests the two strings to see if they are an anagram or not. The program prints a simple message stating that the strings are or are not an anagram.

SOLVING THE ANAGRAM PROBLEM

• Developing a solution for a program is like solving a series of story problems

• Sub-problems:

• Data input

• Convert each string to a standard form:

• No spaces or punctuation, and all one case (upper or lower – it doesn’t matter)

• Count all occurrences of each letter

• Compare all of the counts

• The inputs are an anagram if all corresponding counts are equal

Presenter Notes
Presentation Notes
Solving a computer programming problem is very much like solving a series of story problems. We develop a sequence of algorithms or partial solutions that lead to the complete solution, which we then program. The anagram problem has four main sub-problems: data input, converting the string into a standard form (the standard form has no spaces or punctuation characters, and is all in the same case, either upper or lower); next, count how many times each alphabetic character or letter appears in the phrase, and then compare all the counts. The rearranged phrase is an anagram if and only if all the counts are equal.

CREATING A STANDARD FORM
(CLEANING UP THE INPUT)

define the variable phrase and initialize it to empty

for each character, c, in input
{

if c is an alphabetic letter
{

make c lower case
append c to phase

}
}

Presenter Notes
Presentation Notes
Data input is a task that we have done many times and so we skip those details for now.
Pseudocode is a convenient way of expressing an algorithm. It can be anything from words written in a natural language to working code in a programming language. It is often a mixture of both. Pseudocode lets us focus on what we want to do without worrying too much about how we must to do it.
To convert the first input into a standard form, begin by creating a new, empty phrase. Then for each character in the input, if that character is an alphabetic character, convert it to a lower-case letter and append it to or add it at the end of the phrase.
Converting the second input requires the same steps, just with different variables. This observation suggests that we can use a function to avoid duplicating our effort.

THE COUNTING IDEA

define and initialize 26 counters:
a_count = 0, b_count = 0, ..., z_count = 0

for each letter, c, in phrase
{

if (c == 'a')
a_count1++;

else if (c == 'b')
b_count1++;

. . . .
else

z_count1++;
}

Presenter Notes
Presentation Notes
Next, we need to decide how to count the occurrences of each letter in the cleaned-up input, that is, the new phrase. To begin with, we could have 26 counters – one for each letter in the alphabet (we only need 26 because we are only dealing with lower case letters at this point in the problem). Each time we see a character ‘a’ we increment the a-counter, each time we see a character ‘b’ we increment the b-counter, etc.
This is the idea, but it has some problems. Twenty-six variables are really cumbersome to work with and the long if-else ladder is really error prone. Our approach will be to use a single array in place of the 26 separate variables. Again, the fact that the process is the same for both input strings suggests that we can use a function.

TESTING FOR AN ANAGRAM:
COMPARING LETTER COUNTS

if (a_count1 == a_count2 && b_count1 == b_count2 &&
. . . && z_count1 == z_count2)

cout << "The phrases form an anagram\n";
else

cout << "The phrases DO NOT form an anagram\n";

Presenter Notes
Presentation Notes
Next, we compare each corresponding pair of counters: count1 for the first input string and count2 for the second input string. If every pair of counters are the same, then the strings represent an anagram; otherwise they are not an anagram.

REPLACING DISCRETE COUNTERS
WITH AN ARRAY

for each letter, c, in a standardized phrase
{

if (c == 'a')
count[0]++;

else if (c == 'b')
count[1]++;

. . . .
else

count[25]++;
}

Presenter Notes
Presentation Notes
It’s possible to replace the discrete or separate counter variables with an array. Doing this still leaves us with a loop, and even worse, it still leaves us with the very long if-else ladder. However, using an array greatly simplifies the task of defining and initializing the counters. More importantly, it sets the stage for a much more compact and less error prone solution.
�

ASCII CONVERSIONS:
FROM NUMBER TO CHARACTER

• ASCII ‘0’ is 48; ASCII ‘9’ is 57

• Number to convert is in n

• n % 10 is the lowest order (one’s) digit

• n % 10 + ‘0’ is the ASCII code for the numeric value of the one’s digit

• (char) (n % 10 + ‘0’) is the ASCII letter corresponding to the one’s digit

Presenter Notes
Presentation Notes
We used the ASCII code to help solve the palindrome-number problem earlier in this chapter. In that problem our task was to convert an integer into a string. First, we isolated the right-most or one’s digit in the integer. Then we converted the numeric value of that digit into the corresponding ASCII code for the digit by adding to it the ASCII code for a character ‘0’. The compiler automatically converts the character ‘0’ into the corresponding ASCII code, which is the numeric value of 48. For example, suppose that the one’s digit is a ‘9’. Then the addition operation becomes 9 + 48, which is 57. 57 corresponds to the ASCII code for a character ‘9’. Now, all that is left to do is to convert the numeric 57 into the ASCII encoded character ‘9’, which we do with a type cast.

ASCII CONVERSIONS:
FROM CHARACTER TO NUMBER

• ASCII ‘a’ is 97; ASCII ‘z’ is 122

• ASCII ‘A’ is 65; ASCII ‘Z’ is 90

• c - ‘a’ is an integer in 0 - 25

count[26]{};

for i = 0 to the end of phrase

count[phrase[i] - 'a']++;

Presenter Notes
Presentation Notes
It’s also possible to convert from a character into a number. But in this case, we want to map the alphabetic characters of lower-case-a through lower-case-z into a number that we can use to index into our counter array. Recall that all arrays are zero-indexed, which means that the valid index values range from 0 to 25. That is, if c is a variable that stores the character that we want to map to an index value, then the result of c-‘a’ should be in the range of 0-25.
Writing in pseudo code again, we create our counter array of 26 integers and initialize each integer or element to 0. The initialization notation used here is relatively new for C++. For each character in the phrase, we map it into an index in the range of 0 to 25 – that gives us one counter or element in the counter array, which we increment. In the end, we have a very tidy and efficient way of counting the occurrences of each letter in the phrase.

COMPARING THE COUNTS

if (a_count1 == a_count2 &&

b_count1 == b_count2 &&

. . .

z_count1 == z_count2)

cout << "An anagram\n";

else

cout << "NOT an anagram\n";

for (int i = 0; i < 26; i++)
if (count1[i] != count2[i])

return false;
return true;

Presenter Notes
Presentation Notes
Finally, we need a way of comparing each of the counts. The basic idea is that we want to make sure that the a-counts for both phrases are the same, similarly for the b-counts, all the way through to the z-counts. If all the counts are the same, then the two inputs are an anagram, else they are not.
But, just as before, such a long if-else ladder is cumbersome and error-propone. Switching from 26 separate counters to an array again allows us to develop a more compact solution. We write our final algorithm in full C++ rather than in pseudocode. Assume that the code fragment illustrated here is in a function. We can’t conclude that the phrases are an anagram when any two counters are the same – all 26 counters must be the same before we can state that the phrases are an anagram – but we can conclude immediately that the phrases are not an anagram if any two corresponding counts are not the same.
Now, all that is left for us to do is to write and test the program.

	Software Development:�The Anagram Problem
	Simple Anagram
	Clever Anagram
	The Basic anagram problem
	Solving the Anagram Problem
	Creating a Standard form�(Cleaning up the input)
	The counting idea
	Testing For An Anagram:�Comparing Letter Counts
	Replacing Discrete Counters�With an Array
	ASCII Conversions:�From Number to Character
	ASCII Conversions:�From Character To Number
	comparing the counts

