
NEW AND DELETE

Creating and destroying objects on the heap

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Recall that C++ not only allows programmers to create automatic variables on the stack but also as dynamic variables on the heap. Dynamic variables are created at runtime with the new operator, that is, they are created while the program is executing. Objects are also variables and so can be created automatically or dynamically. Objects created on the heap must be destroyed with the delete operator.



CLASS EXAMPLE

class widget
{

private:
int color = 0xff0000;
double cost = 0.0;

public:
widget() {}
widget(int a_color, double a_cost)

: color(a_color), cost(a_cost) {}
~widget() { . . . }
int get_color() { return color; }

};

Presenter Notes
Presentation Notes
The widget class illustrated here forms the basis for the following examples. The class defines two overloaded constructors: a default constructor and a general constructor. Although the data members are initialized in the class specification, the default constructor is still needed to permit creating an object without providing arguments. Although a destructor is not needed with the widget class, one is outlined for use in the following examples. We’ll see a need for destructors in the next chapter when our classes become more complex. Finally, the widget provides a getter function that will illustrate in the following examples how all member functions are called.



DEFAULT CONSTRUCTOR

• widget* w1 = new widget;

• delete w1;

• widget* w2 =
new widget(0x00ff00, 5.99);

• delete w2;

GENERAL CONSTRUCTOR

DYNAMIC OBJECTS

0xff0000
0.0

w1
0x00ff00

5.99

w2

Presenter Notes
Presentation Notes
Single objects are created dynamically on the heap with the new operator. Whenever an object is created, either on the stack or on the heap, a constructor is called to build the object. Like all overloaded functions, which constructor is called is determined by the parameters passed in the function call. The example on the left calls the default constructor while the example on the right calls a general constructor. Objects created on the heap must be destroyed with the delete operator.



ARRAY OF OBJECTS

• widget* w3 = new widget[n];

• delete[] w3;

• widget* w4[100];

• for (int i = 0; i < 3; i++)
w4[i] = new widget;

ARRAY OF OBJECT POINTERS

ARRAYS AND OBJECTS

w3
0xff0000

0.0
0xff0000

0.0
0xff0000

0.0

w4
. . .

0xff0000
0.0

0xff0000
0.0

0xff0000
0.0

Presenter Notes
Presentation Notes
It’s possible, and often desirable, to create arrays of objects. The problem is that we don’t always know, at the time that we write and compile a program, how many objects we need. If we make the array too big we end up wasting memory, but if we make the array too small we may not have enough objects to complete a task.One solution is to create arrays of objects dynamically with new. The size of an automatic array must be specified at compile time, but the size of a dynamic array can be specified at runtime. This means that we can specify the size of an array with a variable and wait until the program is running to determine how big the array should be, either by user input or by some calculation. The default constructor is the only constructor allowed here. It’s necessary to signal the compiler when destroying an array of objects, which we do with the square brackets placed between the delete keyword and the array variable name. Without this signal, the compiler will generate only one call to the destructor; with the brackets, the compiler generates a destructor call for each object in the array.An alternative approach is to create an array of pointers. Pointers are smaller than most objects and so waste less memory when they are unused. Furthermore, constructors and destructors are not called when pointers are created or destroyed, which saves unnecessary function calls when some objects in an array go unused. Objects are created one at time, as needed, and their address is stored in the pointer array. This approach also allows programmers to call any constructor function and not just the default, but the objects must be deleted one at a time as well.



ARRAYS OF OBJECTS

• widget w5[100];

• w5[10].get_color()

• widget* w6 = new widget[100];

• w6[10].get_color()

• widget* w7[100];

• for (int i = 0; i < 100; i++)
w7[i] = new widget(0x0000ff, 10.0);

• w7[10]->get_color()

ARRAYS OF POINTERS

ARRAYS AND FEATURE ACCESS

Presenter Notes
Presentation Notes
We have just seen that it is possible to create an array of objects, either automatically on the stack or dynamically on the heap. Regardless of how the array is created, indexing into an array of objects selects a single object. The features of the selected object are accessed with the dot operator.Indexing into an array of pointers, on the other hand, returns a single pointer. When that pointer points to an object, we access the object’s features with the arrow operator.


	new and delete
	Class Example
	Dynamic Objects
	Arrays And Objects
	Arrays And Feature Access

