NAMESPACES &

THE SCOPE RESOLUTION OPERATOR

Creating a distinct named scope

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
It’s easy to understand the namespace and scope resolution operator syntax but more challenging to understand the problems we use them to solve. So, the following discussion focuses on programming but attempts to provide enough context to illustrate why we use namespaces. Furthermore, we’ll revisit the scope resolution operator in the next chapter but use it with classes.

FIRST EXAMPLE

##tinclude <iostream> #tinclude <iostream>

using namespace std;

std::cout << “hello world”

cout << “hello world” << endl; << std::endl;

Presenter Notes
Presentation Notes
Most of our programming examples have been using namespaces throughout the semester. And depending on how you choose to write your code, you might also use the scope resolution operator. This example from chapter 1 illustrates how to use a namespace named standard. The “using” statement allows us to use the programming elements declared in the standard namespace using just the element’s name. Alternatively, we can use the element by providing its full name consisting of the namespace name, the scope resolution operator, and the element’s name.

NAME COLLISIONS

LIBRARY | LIBRARY 2

void print(string name) {...} void print(string part) {...}

* Programmers name programming elements based on what they do
* A name collision occurs when two elements have the same name in the same scope
* When linked together, elements from multiple object files exist in the same scope

Presenter Notes
Presentation Notes
Following good programming style, programmers typically name functions based on what they do in a program. Sadly, this practice can lead to “name collisions.” A name collision occurs when a program defines two or more functions with the same name in the same scope. Collisions typically happen when two functions do essentially the same thing but in different contexts or parts of the program. Programmers give them the same name because of their similar tasks. Correcting the collision is relatively easy when one organization creates and owns all the parts. But it’s more challenging to fix the problem when the code comes from different organizations. This situation typically arises when a program includes code from multiple object-code libraries licensed from different vendors.

NAMESPACES

“A namespace is a declarative region that provides a scope to the identifiers
(the names of types, functions, variables, etc.) inside it. Namespaces are used to
organize code into logical groups and to prevent name collisions that can
occur especially when your code base includes multiple libraries”

https://learn.microsoft.com/en-us/cpp/cpp/namespaces-cpp

Namespaces help manage name collision

Presenter Notes
Presentation Notes
C++ introduced namespaces to alleviate name collisions. Microsoft provides a clear definition of “namespace:”
“A namespace is a declarative region that provides a scope to the identifiers (the names of types, functions, variables, etc.) inside it. Namespaces are used to organize code into logical groups and to prevent name collisions that can occur especially when your code base includes multiple libraries.”
Namespaces help manage name collisions.

NAMESPACE CREATES A NAMED SCOPE

namespace Acme void Acme: :print(string name)
{ {
void print(string name); cout << "Acme " << name << endl;
}s }s
namespace Widgets galore void Widgets galore::print(string part)
{ {
void print(string part); cout << "Widgets galore "
}s << part << endl;

-

Presenter Notes
Presentation Notes
Syntactically, namespaces look similar to classes and structures but begin with the “namespace” keyword. Library programmers name the namespace with a unique name generally based on an organization or company name and then declare the functions included in the library. They write the function bodies in a separate source-code file with the same notation used to write class member functions outside the class specification.

NAMESPACE CREATES A NAMED SCOPE

namespace Acme

{
-

void print(string name);

namespace Widgets galore

{
-

void print(string part);

void Acme: :print(string name)

{
o

cout << "Acme " << name << endl;

void Widgets galore::print(string part)
{
cout << "Widgets galore "
<< part << endl;

-

Acme: :print("Dilbert");
Widgets_galore::print("wing nut");

Presenter Notes
Presentation Notes
Application programmers use the namespace name and the scope resolution operator to identify a specific library function when calling it.

CLARIFYING AMBIGUOUS SCOPE

C++ provides functions to convert class beta
numbers to strings: {

string to string(int val); public:

string to_string(long val); string to_string(int value)

etc. {return to_string(value);}

I

Presenter Notes
Presentation Notes
Finally, namespaces help the compiler identify the correct function when the function name is ambiguous. In the last chapter, we learned that C++ provides a family of overloaded API or library functions named “to_string” that convert various kinds of numeric data to string objects.
This example specifies a class called “beta” with a member function also named “to_string.” The beta function delegates some of its duties to the API to_string function – that is, the beta to_string function uses the API function. In some cases, our program might be able to call the API function directly, but not always. Perhaps we need to write “b.to_string(x)” where “b” is an instance of beta. Or maybe the call to to_string is just one statement in a larger function.
As written in the example, the compiler treats the call to the function to_string as a recursive function call that will fail, crashing the program.

CLARIFYING AMBIGUOUS SCOPE

namespace std class beta
{ {
string to_string(int value); public:
}; string to_string(int value)

{return std::to _string(value);}

Iy

Presenter Notes
Presentation Notes
C++ declares the to_string function in the standard namespace. So, programmers can clarify that the beta function calls the API function using the namespace name, the scope resolution operator, and the function name. Notice that this notation is necessary for this situation even if the source code file includes the “using namespace std;” statement at the top of the file.

	Namespaces &�the scope resolution operator
	First Example
	name collisions
	namespaces
	Namespace creates a named scope
	Namespace creates a named scope
	Clarifying Ambiguous Scope
	Clarifying Ambiguous Scope

