
static DATA AND FUNCTIONS

Class Ownership vs. Instance Ownership

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The static keyword alters the ownership of the features specified in a class. Static features, both variables and functions, belong to the class as a whole and not to an instance of the class, that is, not to an object.

static AND UML DIAGRAMS

• Static features are denoted by underlining
their name in UML class diagrams

• Attributes or variables

• Operations or functions

• C++ programmers translate the
underline into the “static” keyword

widget

-count : int

+draw() : void

-color : int

+get_color() : int
+set_color(a_color : int) : void

+widget()
-alignment : float

+get_count() : int

+widget(a_count:int, a_color:int, a :float)

Presenter Notes
Presentation Notes
UML class diagrams denote static features by underlining them. It’s possible to have both static attributes and static operations. Programmers translate the underling appearing in UML diagrams into the static keyword when doing forward engineering, that is, when converting UML diagrams into programs.
It’s easier to see the impact of the static keyword on variables, so that’s where we begin.
The first step is to convert the UML class diagram into a C++ class. At this point we focus on the private section with the variables. Variables are private most of the time, but it’s still important to look at the visibility specifiers at the left side of each attribute. In this example, each attribute has a minus sign that indicates that the variable is private.

static DATA

class stack
{

private:
static const int SIZE = 100;
char st[SIZE];
int sp;

};

stack r;
stack s;
stack t; r.SIZE

stack::SIZE

t

r

s

sp

st

sp

st

sp

st

100
SIZE

Presenter Notes
Presentation Notes
The C++ class, specifically the private section, follows directly from the UML class diagram. Once the class is specified, we can instantiate from it as many objects as needed to solve a given problem. In this example, we instantiate three objects from the class. Each object has its own, private copy of the two non-static variables, but they share a single copy of SIZE. The variables st and sp belong individual objects and the memory that holds the variables is allocated inside each object when the object is created and is deallocated when the object is destroyed. But SIZE belongs the class and the memory that holds it is allocated outside of any object. The memory for static data is allocated when a program using the class is first loaded into memory for execution and is not deallocated until the program ends.
Static variables may be accessed through an object, but Since they are not associated with a specific objet, the preferred access notation is through the class name. This notation is only allowed with static data, so using it makes it clear to a reader that the variable is static.

static FUNCTIONS

• static functions belong to the class and not to an instance of the class

• Are not bound to an object

• Do not have a “this” pointer

• Cannot access non-static data

• Cannot call non-static functions

• static functions are still bound to the class scope

• class_name::function_name();

Presenter Notes
Presentation Notes
Static functions are a little more difficult to understand. The most important difference between static and non-static functions is that static functions do not have a “this” pointer argument. Without a “this” pointer, static functions are not bound to an object, which implies that they cannot access non-static data and cannot call non-static functions. But static functions are still bound to or declared in the scope of a class are used exclusively to access static data that is also declared in the class.

foo.h

class foo
{

private:
static int counter;

public:
foo();
static int get_counter();

};

#include "foo.h"

int foo::counter = 0;

foo::foo()
{

counter++;
}

int foo::get_counter()
{

return counter;
}

foo.cpp

static EXAMPLE:
PART 1

Presenter Notes
Presentation Notes
A simple example helps illustrate static data, static variables, and, importantly, how static data is initialized. In the previous stack example, we initialized SIZE inside the class. Doing this requires two keywords: “static” and “const,” which together creates a symbolic or named constant. This example still includes the “static” keyword but omits the “const” keyword. Thus, “counter” is a variable and not a constant, and it cannot be initialized in the class specification because it exists independent of any “foo” object. Furthermore, if we initialize it in a constructor, then the stored value will be reset whenever a new object is instantiated or created.
The initialization syntax unfortunately looks like a global variable, but it is still a member of the class and so it cannot be accessed outside of that scope. This statement is the actual definition of the variable, which is also initializes it in the defining statement.
Notice that when the declaration, appearing in a header file, is separate from the definition, appearing in a source code file, that the static keyword goes with the declaration and not with the definition.

static EXAMPLE
PART 2

#include <iostream>
#include "foo.h"
using namespace std;

int main()
{

foo f0;
foo f1;
foo f2;

cout << f0.get_counter() << endl;
cout << foo::get_counter() << endl;

//cout << counter << endl; // error
//cout << foo::counter << endl; // error

return 0;
}

Presenter Notes
Presentation Notes
Finally, when used by client code, the static data may be accessed in two ways: either through an object that is an instance of the class, or with the preferred notation that uses the class name, the scope resolution operator, and a static function.
The variable “counter” may not be accessed independent of the class scope. Furthermore, since it was specified as private, it can’t it be accessed directly, even using the class and the scope resolution operator. If the variable is moved to the public section of the class, then this final notation would be valid.

	static Data And Functions
	static And UML Diagrams
	static data
	static functions
	static Example:�part 1
	static Example�Part 2

