
GUI-Based vs. Text-Based Assignments in CS1

Robert Ball, Linda DuHadway, Spencer Hilton, and Brian Rague
Weber State University

1465 Edvalson St.
Ogden Utah 84408

robertball@weber.edu, lindaduhadway@weber.edu, spencerhilton@weber.edu, brague@weber.edu

ABSTRACT
Teaching CS1 can be daunting. The first courses in the CS
curriculum help determine which students will ultimately
matriculate into the program. There have been various studies on
how to improve motivation and reduce attrition by using visual-
based environments and assignments. We performed a year-long
study in which we addressed two research questions: 1) How is
student performance affected by drag-and-drop GUI assignments
when compared to traditional text-based assignments? 2) If given
the choice, would students select GUI-based or text-based
assignments? For the first question, there was no statistical
significance, indicating that student performance is not affected
by this visual component. For the second question, we discovered
more students selected the text-based assignments over the GUI-
assignments. Separating the students into groups based on what
they chose revealed that the students that selected the GUI-
assignments scored on average one letter grade higher, enjoyed
the assignments more and spent less time on the assignments. We
recorded the reported motivations behind why students chose to
do the GUI-based assignments versus the text-based assignments:
Overall, the GUI Group’s responses trended toward self-
improvement (e.g. more like the real world, improve skills, more
challenging) while the Text Group’s responses trended toward
ease (e.g. easier/simpler, save time). Lastly, at the end of each
course we asked the students if, given the hypothetical case in
which they were not pressed for time, they would create the Java
application with or without a GUI? 93% of the students responded
that they would create a GUI Java application.

CCS Concepts
• Social and professional topics � Computer science
education; Computational science and engineering
education;
Keywords
CS1; motivation; graphical user interface; assessment; graphics;
Java

1. INTRODUCTION
Instructing CS1 in an engaging manner is especially critical since
students make important decisions about their future academic
careers based on experiences in introductory courses like CS1.
When looking to improve graduation rates for a program, the first
place one might look is individual student performance in those
first introductory courses.

As a result, there have been many papers published that focus
on both increasing enrollment in early courses and decreasing the
amount of attrition impacting the program. One common theme
in the literature is to make the introductory courses more
interesting and exciting. The particular method that we focus on
in this paper is using a more visual-based approach, specifically
including GUIs (Graphical User Interfaces) in assignments and
using a visual drag-and-drop environment to create those GUIs.

We present the results of a year-long study comprising five
different sections of an introductory CS1 programming course
using Java and comparing GUI-based assignments versus text-
based assignments

For the study, we addressed two research questions:
1. How is student performance affected by drag-and-

drop GUI assignments when compared to traditional
text-based assignments?

2. If given the choice, would students select GUI-based
or text-based assignments?

For the first research question, we hypothesized that using a
GUI would positively affect grades. Because our investigation of
related work supports the position that using a GUI increases the
level of student engagement when compared to traditional
command line assignments, we conjectured it would have a
positive effect on grades.

For the second research question, we hypothesized that students
would choose to do the GUI-based assignments over text-based
assignments. We speculated that students would prefer to do GUI-
based assignments because of the more prominent visual
component.

2. RELATED WORK
There have been many attempts to improve on basic textual
programming in introductory programming courses. Researchers
have presented a myriad of approaches to try to further engage
students in introductory courses using a visual approach.

For example, there are a number of visual environments that
have been created. BlueJ is a visual programming environment for
the Java programming language that supports the concepts of
Object-Oriented Programming [10]. RAPTOR is another example
that also focuses on visual representations of objects [2].

Similarly, JPie is a visual representation of class definitions that
supports direct manipulation of graphical representations of
programming abstractions and constructs. The intent is to help
new programmers better understand and have less frustration
with Object-Oriented Programming in Java through a more visual
interface [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

SIGCSE '18, February 21–24, 2018, Baltimore , MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02…$15.00
https://doi.org/10.1145/3159450.3159463

In addition to the programming environment used, a number of
graphical packages or frameworks have been created to garner
greater student interest in programming. We review only a few to
provide a general idea of what has been developed.

For example, to improve student learning, Roberts, Picard, and
Fredricsson explain the use of graphics to introduce object-
oriented techniques in a CS1 course. The visual nature of the
assignments tends to be more interesting to students than just
text-based assignments [15].

In trying to motivate students and increase enrollment,
instructors have often turned to using games in CS courses.
Whether the games are traditional board games (e.g. [4]) or
graphics-based games, the goal is generally the same.
Rajaravivarma explains that using games in CS1 helps students
with a sense of ownership and greater passion [13].

Leutenegger and Edginton explain a similar phenomenon of
increased student interest and understanding by having game-
based programming assignments. However, they took their study
one step further and showed that, by making three consecutive
courses game-based, they had even greater levels of student
satisfaction [11].

Given the overall positive results of game-based class activities,
why aren’t more instructors using games in their courses, despite
the potential to further engage students? Some reasons are that
many faculty do not have the graphics background necessary to
create and design such assignments, games can potentially have
alienating effects in regards to gender, and there are few textbook
options for pursuing such a course of action [16].

However, games are not the only option for incorporating
graphics into the classroom. Holliday and Luginbuhl explain their
use of visual memory diagrams, which are visual representations
of memory changes as the program executes. They found a
correlation between students’ ability to construct visual memory
diagrams and students’ comprehension of object-oriented
concepts [7].

As an alternative to simply adding graphical assignments to
Java, there are a number of graphics-based programming
languages. In general, these languages are used when instructing
younger students and often involve storytelling.

Cooper, Dann, and Pausch review different approaches of
teaching Object-Oriented Programming. They particularly find
Alice, a 3D programming language, to be useful in reducing the
attrition of at-risk students [3]. Similarly, Kelleher, Pausch, and
Kiesler find that Alice helps motivate middle school girls to learn
computer programming [8]. Scratch and Greenfoot are also visual
programming languages aimed at motivating younger
programmers. Utting, et al. discuss the differences between
Scratch, Greenfoot, and Alice [17].

Although games and stories make good use of graphics, they do
have limitations. Not all students that graduate will go on to create
games professionally. On the other hand, one of the most practical
applications of graphics in modern life, even beyond games, is
Graphical User Interfaces (GUIs).

Koffman and Wolz make a case for using GUIs in CS1. They
explain the advantages and disadvantages of using the traditional
text-based approach versus using a GUI. They explain new
packages that can be used to encourage student learning, but they
stop short of actually evaluating the usefulness of their approach
[9].

Proulx, et al. follow a similar vein. They explain that since GUI
controls are in fact objects that the object-first methodology
should use GUIs rather than text [12].

Alphonce and Ventura created a small graphics package as part
of Java’s Swing framework. They use the approach of utilizing
both GUIs and general graphics to capture greater interest for

students. They point out, as do others that advocate GUIs, that
students feel comfortable using GUIs and graphics because that is
the world that they live in [1].

Following the approach of using GUIs first, English describes
JEWL, an automated assessment of GUI-based programs. If
instructors are going to be using GUIs in the classes, then it is
reasonable to create an automated grading system for the GUI
assignments [5].

Reges reports on an experiment where he creates the outline or
skeleton of a GUI program from which his students complete the
assignment. He reports that students seem to enjoy the programs
more and that the class discussions have been noticeably more
fun. However, he indicates that it takes more time for him to
create the assignments and that students get confused over how
to incorporate their code in with his. He concludes that more
study is needed to understand how to use his method beyond his
personal classroom experiences [14].

It is clear from the literature cited that there are many
approaches to creating greater interest in students using visual
approaches. Whether instructors use graphical languages (e.g.
Alice and Scratch), games, graphical games, or the use of GUIs,
visual approaches promote greater student interest.

The purpose of this paper is not to confirm once again that a
visual-based approach in CS1 is valuable, but instead to measure
this value. We systematically created an experimental
environment where we could directly measure how including a
visual component – GUIs in this case – in CS1 assignments either
helped or did not help students in both performance and
motivation.

Many authors (e.g. [1,12,16]) add a caution when introducing
visual components to introductory courses, because the visual
component-whether graphics, games, or GUIs, - have the potential
to add an overhead of additional student learning that detracts
from the main fundamental topics being taught. As a result, we
elected to use Scene Builder, a drag-and-drop GUI creator, to
decrease the overhead of learning additional non-fundamental
concepts in CS1.

3. GUI ENVIRONMENT
In this study, the students used Java version 8. For the GUI portion
of the course the students used JavaFX. JavaFX was released in
December 2008 and became Oracle’s GUI replacement to Swing.

Similar to Swing, JavaFX GUIs can be produced by writing Java
code, but they can also be produced in a drag-and-drop program
called Scene Builder and then tied to a Java program. Scene
Builder was produced to make it possible to drag and drop GUI
controls from a palette. (Scene Builder is similar to Visual Studio’s
drag and drop GUI creator.) After the student has created the
visual look and feel of the GUI, Scene Builder produces an FXML
file – an XML file that Java 8 can load to produce the GUI designed
in Scene Builder. Figure 1 shows an example screenshot of Scene
Builder.

For example, a student might create a GUI in Scene Builder by
dragging menus, buttons, text fields, and other controls onto the
form. The student can then alter the properties of any of the
controls. For instance, they could change the font, the alignment
of controls, or the layout. After the look and feel of the GUI is
designed, the student can then create a Java program to run the
GUI.

If the Java program with the FXML file were to run at this point,
only the GUI that was designed in Scene Builder would appear.
The user can interact with controls by pressing a button for
example, but it’s important to note that no Java code has been
written that reacts to the button’s click event.

Figure 1. Example screenshot of Scene Builder.

For GUI-based application development, students create a GUI
in Scene Builder and save the resulting FXML file. In a separate
step, the students create methods in Java to respond to events
initiated by the user, which can include receiving input from GUI
controls (e.g. text fields) and sending output results to GUI
controls (e.g. labels, text areas).

Comparatively, for text-based application development,
students interacted with the user by employing
System.out.println() to print output and used the Scanner class to
acquire input.

To simplify GUI application development, students were given
a small Java template that already contained the required JavaFX
imports and the code necessary to run the GUI from the FXML
file. Not including the imports, the Java template code length was
nine lines.

For both text-based and GUI-based applications, the IDE used
for creating the Java code for the course was JGrasp. Students
were allowed to choose a different IDE if they preferred.

4. EXPERIMENTAL SETUP
The experiment was conducted over a 12-month period. The
experiment consisted of two different CS1 sections for Summer
2016, one section for Fall 2016, and two sections for Spring 2017.
A face-to-face section was taught every semester and an online
section was taught in Summer 2016 and Spring 2017 (see Table 1).

Table 1 CS1 sections offered in each of the three semesters.

 Online Face-to-face
Summer 2016 17 students 9 students
Fall 2016 not offered 23 students
Spring 2017 29 students 26 students

Although it would have been preferable to also have a Fall
online section, there was a need for the instructor to teach other
CS classes during that time. Also, unlike some universities,
Summer classes are allotted the same amount of time as the Fall
and Spring semesters. In our university, an individual section runs
for about 14 weeks and has an average of approximately 21
students per section.

The following summarizes important information about the
sections:
• All five (5) sections of the course were taught by the same

instructor with the same textbook and resources.

• All five (5) sections had identical assignments and exams.
The only difference between them is that two typos were
found in Fall 2016 in the assignments and were
subsequently corrected.

• There was a total of one-hundred four (104) unique
students that took the course over all five (5) sections.

• For each section of the course, the class was divided into
two groups: Group A and Group B. The groups were of
equal size and randomly generated. Students were not
allowed to self-select. The groups would alternate between
text-based assignments and GUI-based assignments for
assignments 6-9 (see Table 2).

4.1 Assignments
Table 2 shows a summary of GUI-based and text-based
assignments.

The first four assignments were all traditional text-based
assignments: the only input and output for the programs was text-
based.

The fifth assignment introduced the students to JavaFX and
Scene Builder.

Assignments 6-9 had both a GUI-based version and a text-based
version. Group A and Group B in each section were alternately
assigned the GUI version or the text version. This allowed each
group to engage in both types of assignments. Assignments 6-9
were created to test the first research question – how student
performance is affected by GUI- or text-based assignments.

Assignments 10 and 13 were GUI-based assignments.
Assignments 11 and 12 could be done either as text-based or

GUI-based assignments. In this case, the student chose which
version of the assignment they would do. Assignments 11 and 12
were created to test the second research question – what type of
assignment would students choose for themselves?

Table 2. The distribution of GUI-based and text-based

semester assignments.

Assignments GUI/text assignment
1 text
2 text
3 text
4 text
5 GUI (introduction to GUIs)

6
Group A: text / Group B:
GUI

7
Group A: GUI / Group B:
text

8
Group A: text / Group B:
GUI

9
Group A: GUI / Group B:
text

10 GUI
11 student's choice
12 student's choice
13 GUI

The instructor made great effort each semester to not influence

the students in their choice of GUI or text for assignments 11 and
12. The instructor simply stated that there was a choice and did
not elaborate further.

For every assignment in each section, we asked the students to
report on a scale of 1-4 how much they enjoyed the assignment
with 1 being they loved the assignment and 4 being they hated the
assignment. In addition, we asked the student to report how long

it took them to accomplish the assignment in hours and why they
did or did not like the assignment. The exact text that instructed
the students on submitting these survey responses follows:

“In comments section please answer the following:

• Approximately how long did you spend on this
assignment in hours? For example, "1.5 hours" or "3
hours."

• On a scale of 1 to 4, with 1 being the best, and 4 being
the worst how much did you enjoy this assignment?
For example, "1 - I loved it" or "4 - I hated it."

• Based on your answer of 1, 2, 3, or 4, why did you
like/dislike the assignment?

The above answers will not affect your grade. By
voluntarily answering the above questions you will help us
improve this course. Thank you so much for answering the
questions!”

4.2 Isometric Assignments
To simplify the process for our CS1 students, most assignments
required only one method implementation per assignment. For
text-based applications, this meant all code was generally in the
main method. For the GUI-based assignments this meant students
wrote code in a single method that was called by the primary
control, usually a button.

The GUI assignments involved two steps: designing the GUI and
creating the Java code. The text-based assignment had one step:
writing the main method code.

Consequently, creating a GUI assignment involved a small
amount of additional work. In an attempt to offset the additional
work required to create a GUI program, the GUI assignments
generally had one less requirement than the text-based
assignments.

For example, in assignment 8, the text-based assignment asked
the user for two numbers: a minimum and a maximum. By
comparison, the GUI-based assignment used a slider to get only a
minimum, omitting the maximum. The remainder of the
requirements for the assignment were identical.

5. RESULTS
Before we investigated our primary research questions, we
analyzed the data from the study to determine the existence of any
significant relative measures between the groups that might
confound our results.

First, we analyzed the difference in all grades between Group A
and Group B. (A total of 52 students from the 5 sections were in
Group A and 52 were in Group B). Running an ANOVA on all the
grades for all assignments of the two groups resulted in no
statistical significance.

Second, we analyzed the difference in all grades for online
versus face-to-face students regardless of group assignment.
Again, there was no statistical significance. There were 46 online
students and 58 face-to-face students.

Third, we analyzed the difference in all grades for the students
based on when they took the class (i.e. fall, summer, or spring).
There was no statistical significance.

5.1 Research Question 1
Our first research question was: How is student performance
affected by drag-and-drop GUI assignments when compared
to traditional text-based assignments?

Is there a difference in scores between the text-based versus
GUI-based assignments? For example, Group A had text-only
assignments for Assignments 6 and 8, but GUI-only assignments
for Assignments 7 and 9 and Group B had the opposite. How did
the assignment scores compare against each other?

First, we ran an ANOVA on the collective grades for the text
assignments versus the collective grades for the GUI assignments.
The ANOVA showed no statistical significance between the
assignments. In other words, regardless of whether the
assignment was text-based or GUI-based, one group did not score
significantly differently than the other on the same assignment.

Was there a difference between the assignments regarding
student enjoyment and time required to complete the assignment?
Running an ANOVA on time spent on assignments and how much
they enjoyed the assignments resulted in no statistical
significance for either analysis. Once again, regardless of whether
the assignment was text-based or GUI-based, the groups did not
report significantly different amounts of enjoyment nor time
spent for the different assignments.

This ran contrary to our hypothesis that students would score
better on the GUI assignments. We had presumed that students
would enjoy the GUI assignments more and possibly spend more
time on the assignments and thus receive higher scores.

This finding is important because one of the major motivations
for pursuing this study is that other literature found that students
reported in surveys at the end of courses that they generally
enjoyed doing visual-based assignments.

However, this raises the question: From the related literature,
were the students responding that they liked the visual-based
assignments more or that they simply liked the course, the
instructor's enthusiasm for the approach, or something else?

What we found in carefully studying the effects of our
experiment for assignments 6-9 is that, in essence, when
comparing GUI-based with text-based assignments there was no
significant difference between (a) assignment grades (b) student
enjoyment, or (c) the hours dedicated to the assignments.

5.2 Research Question 2
Our second research question was: If given the choice, would
students select GUI-based or text -based assignments?

Students were given a choice to implement assignments 11 and
12 as either a text-based or GUI-based assignment.

Running a t-test found a significant difference: more students
chose to implement text-based over GUI-based assignments;
[t(130)=6.214, p<0.01]. 23% of the students chose the GUI-based
assignment and 77% of the students chose the text-based
assignment (see Table 3).

This was a particularly interesting result because it ran contrary
to our hypothesis and the related literature. Given the choice to
do a GUI or text-based assignment three-quarters of the students
chose to do text-based assignments.

We found that there was no statistical significance in scores
between the self-selected GUI and text groups for assignments 11
and 12. There was also no statistical significance in hours spent
on assignments 11 and 12.

Table 3. Comparison of the self-selected groups: GUI

Group vs. Text Group for Assignments 11 and 12. Only
students that completed assignments 11 and 12 were

included in the analysis. This removed most of the failing
students and students that had earlier dropped the class

from the analysis.

 GUI Group Text Group

Percentage of students in
course

23% 77%

Number of students 21 53
Enjoyment (1-4) (lower is
more enjoyment; higher is
less enjoyment)

1.7 2.21

However, running an ANOVA on enjoyment of text-based

versus GUI-based assignments there was statistical significance
[F(1, 74)=5.472, p=0.22]. For the 23% of the students that chose to
do a GUI-based assignment, they had an average of 1.7 enjoyment
compared to a 2.21 enjoyment for the students that chose the text-
based assignment. In other words, on a 1-4 scale, the students that
chose a GUI-based assignment had a 0.51 (relative to a 4-point
scale) higher enjoyment measure than their peers that chose a
text-based assignment.

5.3 Further Comparison of Self-Selected
Groups (GUI Group vs. Text Group)
Looking at the data, we grouped all the students that decided to
do a GUI on either Assignment 11 or Assignment 12 in “GUI
Group” and all the other students in “Text Group” (see Table 4).

If the student did not complete Assignment 11 nor Assignment
12 they were not included in the analysis. This removed most of
the failing students and students that had earlier dropped the class
from the analysis. There were only two students that failed the
course that also completed Assignments 11 and 12.

We then compared the groups by comparing their final grade in
the course to each other. We found a statistically significant result
[F(1,72)=4.297, p=0.04] with the average final grade in the GUI
Group of 91.2% and the average final grade in the Text Group of
84.7%.

Running an ANOVA on the number of hours reported (per
assignment for all assignments) found statistical significance
[F(1,72)=3.662, p=0.059] with an average 1.99 hours (119 minutes)
per assignment for the GUI group and 2.67 hours (160 minutes)
per assignment for the Text group.

Table 4. Comparison of the self-selected groups: GUI

Group vs. Text Group for all assignments

 GUI Group Text Group
Number of students 21 53

Average final grade for
course

91.2% 84.7%

Average hours spent on all
assignments

1.99 (119
minutes)

2.67 (160
minutes)

Average Enjoyment (1-4)
(lower is more enjoyment;
higher is less enjoyment)

1.44 1.78

This shows that the GUI group, which received on average a

better grade, also on average spent less time per assignment than
the Text Group.

Does this show that GUI development actually saves time? No.
Looking at our first research question we found that for the
controlled experiment using non-self-selected groups the GUI did
not take a statistically significant difference in the number of
hours reported by the students.

Running an ANOVA on the average amount of enjoyment
found a statistical significance [F(1,72)=3.933, p=0.051] with an
average of 1.44 enjoyment for the GUI group and an average of
1.78 for the Text group. (Recall that the lower the number, the
more the student liked the assignment.)

In summary, (a) the students in the GUI group on average had a
higher final grade (an average of a letter grade difference), (b) took
less time per assignment, and (c) enjoyed the assignments more
compared to their Text group counterparts.

The next section explains what the students self-reported.

5.4 Rationale for student selections – in
their own words:
Although it is interesting to see how the different groups
compared to each other in terms of score, enjoyment, and number
of hours spent, this study can be complemented by an
investigation of the reasons students offered when choosing GUI-
based or text-based assignments.

Table 5 shows an aggregation of the reasons for the two groups.
This was a free-response survey where the students could respond
anyway they preferred. We aggregated the results based on
similar responses.

Table 5. Aggregated reasons for choosing to do

Assignments 11 and 12 as a GUI-based or text-based
assignment.

Reasons for Choosing GUI Reasons for Choosing Text

GUI's used in real life 23% Easier/simpler 51%

To improve skills 23% Save time 18%

Fun 18%
More familiar with

text 10%

Prefer GUI over text 14%
Variety – already

did GUI before 10%

More challenging 14% Miscellaneous 6%
Variety - already did

text before 5% Dislike GUI's 4%

Easier/simpler 5%

Of particular note is that the students who chose to do the GUI

chose to do so for vastly different reasons than the students who
chose to the do text-based assignments. Overall, the GUI Group’s
responses trended toward self-improvement (e.g. more like the
real world, improve skills, more challenging) while the Text
Group’s responses trended toward ease (e.g. easier/simpler, save
time).

5.5 Post-course question
At the end of the course, during finals week, we sent emails to
students asking the following two questions:

“Question1: Based on your experience in this class, if you were
not pressed for time, would you create the Java application with
or without a GUI?

Question 2: Why?”
46% of the respondents were part of the GUI Group (e.g. they

had chosen GUI on assignment 11 and/or 12), but 93% of all the
respondents to Question 1 stated they would use GUI outside of
class.

In other words, of the students that chose to answer,
approximately half of them had chosen to do assignment 11
and/or 12 as a GUI assignment. However, 93% of the respondents
answered that if they were not pressed for time that they would
create a GUI application over a text application.

Regarding Question 2, 53% of the respondents mentioned that
GUIs have better usability, 26% mentioned that GUIs are easier for

the user, and 20% mentioned that GUIs are “fancier” or more
“visually appealing” than text applications.

The respondents that indicated that they would not choose GUIs
(the remaining 7%) indicated that GUIs take too long to create.

6. INDIVIDUALITY COMPONENT
Like many other authors (e.g. [13]), we noticed that, when
students are allowed freedom of expression, they often take
advantage of it. Perhaps one way to express individuality is to
make the assignment your own.

Although text-based programs can also be individualized, the
GUI-based assignments had a greater capacity for design
customization than the text-based programs.

Student text-based submissions generally differed in the exact
text displayed and perhaps in the order of input/output.
Structurally, most text-based assignments that received full credit
were remarkably similar.

However, when comparing GUI-based assignments that
received full credit, differences are easily noticed. Most students
added color, added background images, changed the layout of the
controls, or provided one of many individual touches to the GUI.
As a result, no two GUI-based assignments were ever identical

7. CONCLUSION
In the beginning, we had two research questions. Our first
research question was: How is student performance affected by
drag-and-drop GUI assignments when compared to
traditional text-based assignments?

When comparing GUI-based with text-based assignments, there
was no significant difference between (a) assignment grades (b)
student enjoyment, or (c) the hours dedicated to the assignments.
This ran contrary to our hypothesis that students would score
better on the GUI assignments.

This finding is important because other literature found that
students reported in surveys at the end of courses that they
generally enjoyed doing visual-based assignments. However, this
raises the question: Were the students responding that they liked
the visual-based assignments or that they simply liked the course,
the instructor's enthusiasm for the approach, or something else?

Our second research question was: If given the choice, would
students select GUI-based or text -based assignments?

Given the choice to do a GUI or text-based assignment slightly
more than three-quarters of the students chose to do text-based
assignments. Further, we found that there was no statistical
significance in scores or in time spent on those particular
assignments, although the students that chose to do the GUI-based
assignments did enjoy their assignments more than the students
that chose to do the text-based assignments.

Looking more in-depth into the students that chose to do a GUI-
based assignment (GUI group) versus the students that chose to
do a text-based assignment (text group), we found that students
in the GUI group on average (a) had a higher final grade (an
average of a letter grade difference), (b) took less time per
assignment, and (c) enjoyed the assignments more compared to
their Text group counterparts.

We also found the reported motivations of why students chose
to do the GUI-based assignments versus the text-based
assignments differed. Overall, the GUI Group’s responses were
more directed toward self-improvement (e.g. more like the real
world, improve skills, more challenging) while the Text Group’s
responses were more directed toward ease (e.g. easier/simpler,
save time).

We plan to follow up with the students from this year-long
study and track their overall academic performance. In particular,
we plan to track how many of the GUI Group versus the Text

Group graduate with a CS related degree. In addition, we plan to
track how their overall GPA compares, and how many years it
takes the students in each of the respective groups to graduate.

8. REFERENCES
[1] Alphonce, C., & Ventura, P. (2003, October). Using graphics

to support the teaching of fundamental object-oriented
principles in CS1. In Companion of SIGPLAN ’03 (pp. 156-
161).

[2] Carlisle, M. C. (2009). Raptor: a visual programming
environment for teaching object-oriented programming.
Journal of Computing Sciences in Colleges, 24(4), 275-
281.

[3] Cooper, S., Dann, W., & Pausch, R. (2003, February).
Teaching objects-first in introductory computer science. In
ACM SIGCSE Bulletin (Vol. 35, No. 1, pp. 191-195). ACM.

[4] Drake, P., & Sung, K. (2011, March). Teaching introductory
programming with popular board games. In Proceedings of
the 42nd ACM technical symposium on Computer
science education (pp. 619-624).

[5] English, J. (2004, June). Automated assessment of GUI
programs using JEWL. In ACM SIGCSE Bulletin (Vol. 36,
No. 3, pp. 137-141).

[6] Goldman, Kenneth J. "An interactive environment for
beginning Java programmers." Science of Computer
Programming 53.1 (2004): 3-24.

[7] Holliday, M., and David Luginbuhl. "Using memory
diagrams when teaching a Java-based CS1." Proc. of the
41st Annual ACM Southeast Conference. 2003.

[8] Kelleher, C., Pausch, R., & Kiesler, S. (2007, April).
Storytelling alice motivates middle school girls to learn
computer programming. In SIGCHI’07 (pp. 1455-1464).

[9] Koffman, E., & Wolz, U. (2001, February). A simple java
package for GUI-like interactivity. In ACM SIGCSE
Bulletin (Vol. 33, No. 1, pp. 11-15).

[10] Kölling, M. & Rosenberg, J., Guidelines for teaching object
orientation with Java. In Proceedings of the 6th annual
conference on Innovation and Technology in Computer
Science Education (Canterbury, England, June, 2001), 33-36.

[11] Leutenegger, S., & Edgington, J. (2007). A games first
approach to teaching introductory programming. ACM
SIGCSE Bulletin, 39(1), 115-118.

[12] Proulx, V. K., Raab, J., & Rasala, R. (2002). Objects from the
beginning-with GUIs. ACM SIGCSE Bulletin, 34(3), 65-69.

[13] Rajaravivarma, R. (2005). A games-based approach for
teaching the introductory programming course. ACM
SIGCSE Bulletin, 37(4), 98-102.

[14] Reges, S. (2000, May). Conservatively radical Java in CS1. In
ACM SIGCSE Bulletin (Vol. 32, No. 1, pp. 85-89).

[15] Roberts, Eric, and Antoine Picard. "Designing a Java
graphics library for CS 1." ACM SIGCSE Bulletin. Vol. 30.
No. 3. ACM, 1998.

[16] Sung, K. (2009). Computer games and traditional CS
courses. Communications of the ACM, 52(12), 74-78.

[17] Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M.
(2010). Alice, greenfoot, and scratch--a discussion. ACM
Transactions on Computing Education (TOCE), 10(4), 17.

