BUILDING INHERITANCE

Passing data from subclass to superclass constructors

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
The inheritance relationship involves two or more classes: a superclass and a subclass. When a program instantiates an object from the subclass, it simultaneously instantiates an object from the superclass. The program is responsible for initializing or constructing both objects. This section presents the C++ syntax for establishing the inheritance relationship and shows how a subclass constructor passes data to a superclass constructor.



IMPLEMENTING INHERITANCE

class Person

{
¥

class Actor

{
b

class Start

{
¥

: public Person

Person

-name :string

+Person(n : string)

i

Actor

-agent :string

+Actor(n : string, a : string)

: public Actor %

Star

-balance : double

+Star(n : string, a : string, b : double)



Presenter Notes
Presentation Notes
The class specifications on the left correspond to the UML inheritance hierarchy appearing on the right. Remaining consistent with the notion that inheritance is a one-way relationship from the child or subclass to the parent or superclass. Programmers build inheritance with code appearing as a part of the subclass specification. The notation for implementing inheritance consists of a colon, the keyword “public,” followed by the superclass name. It is possible to replace “public” with either “private” or “protected,” but doing so is very rare because the result is not helpful.
Recall that the C++ compiler reads the source code only once, from top to bottom. Furthermore, a class’s specification must be complete before it is used as another class’s superclass. Programmers satisfy this requirement by specifying the superclass before any subclasses. In this example, the classes are specified from the superclass to the last subclass.



INSTANTIATING A SUBCLASS

Instantiating an object from Star also
creates objects from Actor and Person

Constructors run for all classes

Default constructors, if available, run
automatically

Parameterized constructors are explicitly
called

Star constructor calls Actor constructor

Actor constructor calls Person constructor

Person

-name :string

+Person(n : string)

i

Actor

-agent :string

+Actor(n : string, a : string)

i

Star

-balance : double

+Star(n : string, a : string, b : double)



Presenter Notes
Presentation Notes
When a programmer instantiates an object from the last subclass, Star, it also creates an Actor. And when the compiler makes an Actor, it makes a Person. The compiler constructs each object as it creates it, and the construction process begins by calling the Star constructor. The Star constructor calls the Actor constructor, which calls the Person constructor. So, the constructor calls proceed from the last subclass upwards in the inheritance hierarchy to the superclass.
If the superclass has a default constructor, the subclass constructor will call it automatically without needing an explicit function call. However, if the superclass does not have a default constructor, or if the programmer wants to pass arguments to the constructor – that is, wants to call a parameterized constructor – then an explicit function call is needed.



CONSTRUCTOR CALL CHAINS

Person(string n) : name(n) {}
Actor(string n, string a) : Person(n), agent(a) {}

Star (string n, string a, double b)
Actor (n, a), balance (b) {}

Star big star ("John Wayne", "Cranston Snort", 5000000);



Presenter Notes
Presentation Notes
The compiler reads class specifications, including constructor definitions, downward from the superclass to the last subclass. But the constructors are called and run in the opposite direction – from the last subclass upward to the superclass. Explicit calls from subclass constructors to superclass constructors are only allowed in an initializer list, and they must be the first element in that list.
The Star constructor receives three values in its parameter list in this example. The constructor uses one of those values to initialize the Star class variable balance and passes the other two values to the Actor constructor. The Actor constructor uses one value to initialize its Agent’s name and passes the other to Person by calling the Person constructor.



Constructors

Call

DATA FLOW

string name;

Person(string n) : name (n) {}
string agent;
Actor (string n, string a) : Person(n), agent(a) {}
double balance;
Star (string n, string a, double b) : Actor(n, a), balance (b) {}

S

‘{: Star big star (“John Wayne”, "“Cranston Snort”, 5000000);



Presenter Notes
Presentation Notes
We can use this understanding to trace the data as it flows through the chain of constructor calls. The data flow begins when the program instantiates a Star object. The instantiation calls the Star constructor, starting a sequence of chained constructor calls. The data begin as arguments in the Star constructor call, are passed to the Star constructor definition parameters, and are passed from one constructor to the next.



Constructors

Call

DATA FLOW

S

string name;

Person(string n) : name (n) {}
string agent;
Actor(string n, string a) : Person(n), agent(a) {}
double balance;
Star(string n, string a, double b) : Actor(n, a), balance(g) {}

‘{: Star big star (“John Wayne”, “Cranston Snort”, 5000000);



Presenter Notes
Presentation Notes
The Star constructor first calls the Actor constructor and passes two of its parameters, n and a, to the Actor constructor. When the Actor constructor returns, the last parameter, b, is used to initialize the Star’s balance.


Constructors

Call

DATA FLOW

S

string name;

Person(string n) : name (n) {}
string agent;
Actor (string n, string a) : Person(n), agent(éjﬂ{}
double balance;
Star (string n, string a, double b) : Actor(n, a), balance (b) {}

‘{: Star big star (“John Wayne”, "“Cranston Snort”, 5000000);



Presenter Notes
Presentation Notes
The Actor constructor calls the Person constructor and passes its parameter, n, to the Person constructor. Parameter a is used to initialize the Agent’s name.


Constructors

Call

DATA FLOW

S

string name;

Person(string n) : name (n) {}
string agent;
Actor (string n, string a) : Person(n), agent(a) {}
double balance;
Star (string n, string a, double b) : Actor(n, a), balance (b) {}

‘{: Star big star (“John Wayne”, "“Cranston Snort”, 5000000);



Presenter Notes
Presentation Notes
Finally, parameter n is used to initialize the Person’s name, which, because a Star is an Actor, and an Actor is a Person, is the Star’s inherited name.
It’s important to note that while the parameter names are arbitrary – programmers may choose any name they wish – once a name is established in the parameter list, it must be used consistently throughout the rest of the function, including in the initializer list.


	Building Inheritance
	Implementing Inheritance
	Instantiating a Subclass
	Constructor Call Chains
	Data Flow
	Data Flow
	Data Flow
	Data Flow

