
ASSOCIATION

A bidirectional constructive relationship

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Association is the only bidirectional class relationship. Bidirectionality makes association the most general constructive relationship and the most difficult to implement. This section introduces the relationship and explores some of its challenges.

ASSOCIATION:
DOUBLE-ENDED AGGREGATION

projectcontractor projectcontractor

A contractor has-a project A project has-a contractor

Presenter Notes
Presentation Notes
We can think of association as two-way aggregation, reading well in both directions. This view suggests that we already know a lot about the relationship and foreshadows some of its problems. It is a “has-a” or whole-part relationship, so we can say that “a contractor has a project” and, equally well, “a project has a contractor.” This symmetry suggests that both classes simultaneously play the roles of the whole and part classes, rendering the role names “whole” and “part” unhelpful.
When we build aggregation, we must specify the part class before the whole. But, each class simultaneously plays both roles, so we can’t specify both classes first, creating a specification-order problem.

ASSOCIATION:
UML SYMBOL AND CLASS ROLES

• Symmetric connector: neither end decorated

• Classes are peers

projectcontractor
Peer Peer

Presenter Notes
Presentation Notes
Although the UML class relationships attempt to reflect the relationships between the entities we see in the “real world,” the symbols and much of the terminology is arbitrary and artificial. Viewing association as a two-way aggregation doesn’t automatically suggest the UML symbol or role names. At best, the view might suggest using a line with aggregation diamonds at both ends for the association connector. This choice is sensible but is not the one the UML designers made. Instead, the association connector is an undecorated line, which reflects the relationship’s symmetry and bidirectionality.
Composition and aggregation naturally form whole-part hierarchies. But given association’s symmetry, it doesn’t form a hierarchy, and those roles are no longer appropriate. The two classes are not in a superior-inferior relationship, so they are naturally peers.

ADDITIONAL ASSOCIATION
CHARACTERISTICS

• “Has-A” reading well in both directions

• Implemented with pointer in both classes

• Weak or loose binding

• Independent lifetimes

• Objects are shareable

class contractor
{
 private:
 project* theProject;
}

class project
{
 private:
 contractor* theContractor;
}

contractor
object

project
object

Presenter Notes
Presentation Notes
Viewing association as a double-ended aggregation does lead to some conceptual understanding. Like aggregation, we build associations with pointers but with a pointer in each class, so the related objects point at each other. This implementation implies that the objects are weakly or loosely bound. So, they have independent lifetimes – the program creates the objects and connects them when convenient – and they can be shared with or bound to other program objects.

DIRECTIONALITY DRIVES ASSOCIATION

Peer2Peer1Peer2Peer1Peer2Peer1Peer2Peer1

NavigateKnows AboutMessagesBidirectional

Presenter Notes
Presentation Notes
Association’s directionality sets it apart from the other class relationships. It is the only relationship that operates in both directions, meaning that both classes can send messages, both classes “know about” each other, and given one peer object, the program can navigate to or reach the other.

READING DIRECTION
contractorproject ◄ works on

projectcontractor works on ►

• Relationship is still bidirectional

• “Has-A” still reads in both directions

• Reading direction only applies to the relationship label

• In English, “a contractor works on a project” sounds okay

• In English, “A project works on a contractor” has a different,
strange meaning

• Indicate the best reading direction with an arrow

Presenter Notes
Presentation Notes
Although labeling or naming the relationship is still optional, we do it more frequently with association than the other relationships. The label or name we choose for the relationship doesn’t change or restrict association’s bidirectionality – it’s still a bidirectional Has-A relationship. But the label may read better in one direction than the other. We can signal the best reading order by adding a simple arrow to the label. Specifying the relationship’s reading direction makes it independent of the relative class orientation in the diagram. In this example, we always read the label from the contractor to the project.

IMPLEMENTING ASSOCIATION:
FORWARD DECLARATIONS

class project;

class contractor
{
 private:
 project* theProject;
}

class contractor;

class project
{
 private:
 contractor* theContractor;
}

Presenter Notes
Presentation Notes
C++ requires us to specify a class before using its name as a data type. But we can’t do so when two classes point to each other, so we use a forward declaration.
A forward declaration introduces a class name – just its name, not its variables or functions - to the compiler; said more formally, it enters the class’s name into the compiler’s symbol table. If we wanted to embed or nest one object in another, as we do for inheritance and composition, the compiler needs to “know” the size of the nested object. It calculates the size by summing the sizes of the object’s member variables. But this information is unavailable through a forward declaration. A pointer’s size is independent of the size of the object to which it points. So, forward declarations work for pointers and only for pointers, making them the workaround for the class specification-order problem.

ASSOCIATION AND
INLINE FUNCTIONS

Peer2
p1 : Peer1*
+ foo() : void

Peer1
p2 : Peer2*
+ bar() : void

class Peer2;

class Peer1
{
 private:
 Peer2* p2;
 public:
 void bar();
};

void Peer1::bar()
{
 p2->foo();
}

Presenter Notes
Presentation Notes
Association restricts how we organize class members in ways that forward references can’t mitigate. UML class diagrams don’t present enough detail to illustrate the problem or how to work around it, so we turn to C++ code. We usually don’t include the variables implementing a class relationship in a UML diagram, but it helps to clarify the example code.
A Peer1 object sends the foo message to a Peer2 object. The message-sending code is included in the bar member function. To generate the bar function’s machine code, the compiler needs to “know” that “foo” is a class name and that the class has a parameterless function named foo. That’s more information than a forward declaration provides.
Consequently, a peer function sending a message to the opposite peer cannot be inlined with the inline keyword or by putting the function body in the class specification. Instead, we can only prototype the function in the class specification and must define it (that is, write the body) in a source code file.

	Association
	Association:�Double-Ended Aggregation
	Association:�UML Symbol and Class Roles
	Additional Association�Characteristics
	Directionality Drives association
	Reading Direction
	Implementing Association:�Forward Declarations
	Association and Inline functions

