
ACTOR 3

Multi-class, Multi-relational Example

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The Actor 3 example demonstrates aggregation and composition coupled with inheritance. Like the first two versions, the third doesn’t solve a “real” problem but demonstrates the syntax for building, establishing, and using the demonstrated relationships.

ACTOR 3 UML
CLASS D IAGRAM

Star
- balance : double
+ Star(n : string, a : string, b : double, s : string, c : string)
+ display() : void

Actor
- agent : string
+ Actor(n : string, a : string, s : string, c : string)
+ display() : void

Address
- street : string
- city : string
+ Address(s : string, c : string)
+ display() : void

Person
- name : string
+ Person(n : string, s : string, c : string)
+ Person(p : Person&)
+ ~Person()
+ setDate(y : ing, m : int, d : int) : void
+ display() : void

Date
- year : int
- month : int
- day : int
+ Date(y : int, m : int, d : int)
+ display() : void

Presenter Notes
Presentation Notes
The UML class diagram forms our “road map” guiding the program development. The inheritance relationships remain unchanged from the previous examples. But the example adds a composition relationship between the Person and Address classes and an aggregation relationship between the Person and Date classes. These relationships are arbitrary and for demonstration only.

ACTOR 3
WHOLE-PART

Star
- balance : double
+ Star(n : string, a : string, b : double, s : string, c : string)
+ display() : void

Actor
- agent : string
+ Actor(n : string, a : string, s : string, c : string)
+ display() : void

Address
- street : string
- city : string
+ Address(s : string, c : string)
+ display() : void

Person
- name : string
+ Person(n : string, s : string, c : string)
+ Person(p : Person&)
+ ~Person()
+ setDate(y : ing, m : int, d : int) : void
+ display() : void

Date
- year : int
- month : int
- day : int
+ Date(y : int, m : int, d : int)
+ display() : void

Presenter Notes
Presentation Notes
Address and Date are “terminal” classes because no other classes build on them. And only the Person class “knows about” them, and they don’t “know about” any other program classes. In the previous chapter, we covered the syntax and concepts necessary to understand these classes, and we won’t elaborate here. Most program changes supporting the composed Address and aggregated Date classes occur in Person.

Person.h (1)

#pragma once

#include "Address.h"
#include "Date.h"
#include <iostream>
#include <string>
using namespace std;

class Person
{

private:
string name;
Address addr;
Date* date = nullptr;

Presenter Notes
Presentation Notes
The #pragma once ensures that the Person header file is included in a program exactly once.
The Person class must “see” the class specifications for the Address and Date classes before it uses them to define its member variables or functions. The #include directives incorporate the specifications, but the order of inclusion is insignificant.
The program creates the composition relationship with a non-pointer member variable and an aggregation relationship with a pointer. The program must initialize the pointer in the class specification, as illustrated, or in the constructor.

ACTOR 3
CONSTRUCTORS

Star
- balance : double
+ Star(n : string, a : string, b : double, s : string, c : string)
+ display() : void

Actor
- agent : string
+ Actor(n : string, a : string, s : string, c : string)
+ display() : void

Address
- street : string
- city : string
+ Address(s : string, c : string)
+ display() : void

Person
- name : string
+ Person(n : string, s : string, c : string)
+ Person(p : Person&)
+ ~Person()
+ setDate(y : ing, m : int, d : int) : void
+ display() : void

Date
- year : int
- month : int
- day : int
+ Date(y : int, m : int, d : int)
+ display() : void

Presenter Notes
Presentation Notes
Composition is a strong or tight binding that a program builds when it creates the whole-class object. If the part class has a default constructor, the whole constructor can call it implicitly. However, if the part doesn’t have a default constructor or the program “wants” to call a different constructor, the data needed to build the part must be provided to the whole-object constructor. When the program instantiates an object from the Star class at the bottom of the inheritance hierarchy, it must pass the data the composition constructor needs upward through the Actor and Person constructors.

AGGREGATION
ALTERNATIVE

Star
- balance : double
+ Star(n : string, a : string, b : double, s : string, c : string)
+ display() : void

Actor
- agent : string
+ Actor(n : string, a : string, s : string, c : string)
+ display() : void

Address
- street : string
- city : string
+ Address(s : string, c : string)
+ display() : void

Person
- name : string
+ Person(n : string, s : string, c : string)
+ Person(p : Person&)
+ ~Person()
+ setDate(y : ing, m : int, d : int) : void
+ display() : void

Date
- year : int
- month : int
- day : int
+ Date(y : int, m : int, d : int)
+ display() : void

Presenter Notes
Presentation Notes
Programs can build an aggregation relationship whenever convenient, including when creating the whole-class object. If we choose this approach, we must pass the aggregation data through the constructors just as we did with the composition data. But providing a setter function that builds or updates the relationship is often more convenient. When we build a whole-part relationship with aggregation, we also must include a copy constructor and a destructor function.

Person.h (2)

Person(string n, string s, string c)
: addr(s, c), name(n) {}

Person(Person& p)
: name(p.name),
addr(p.addr),
date(new Date(*p.date)) {}

~Person() { delete date; }

Presenter Notes
Presentation Notes
The general constructor receives the data needed to construct instances of the Person and Address classes as function parameters. The Person constructor calls the Address constructor by using the composition variable name as the function name. The Person constructor passes some of its parameters onto the Address constructor.
The copy constructor builds a new Person object by copying the members of an existing object named p. Each initializer element behaves like an assignment statement.
The destructor deletes or destroys any part-class object. Older C++ compilers required programmers to test for a nullptr, but newer compilers don’t.

AGGREGATION SETTER FUNCTIONS

void Person::setDate(int y, int m, int d)
{

delete date;
date = new Date(y, m, d);

}

void Person::setDate(Date* d)
{

delete date;
date = d;

}

Presenter Notes
Presentation Notes
There are two common ways to write the setter function. The first version creates a new part object from “raw” data and installs it as the new part object. Alternatively, the function can install an existing object as the new part. A class can include both versions as overloaded functions, but it only needs one. However, both versions must delete or destroy an existing part to prevent a memory leak. If the whole shares the part with another program object, the program must designate one object as the “owner” and make it responsible for deleting the part when it isn’t needed.

ACTOR 3
DISPLAY

Star
- balance : double
+ Star(n : string, a : string, b : double, s : string, c : string)
+ display() : void

Actor
- agent : string
+ Actor(n : string, a : string, s : string, c : string)
+ display() : void

Address
- street : string
- city : string
+ Address(s : string, c : string)
+ display() : void

Person
- name : string
+ Person(n : string, s : string, c : string)
+ Person(p : Person&)
+ ~Person()
+ setDate(y : ing, m : int, d : int) : void
+ display() : void

Date
- year : int
- month : int
- day : int
+ Date(y : int, m : int, d : int)
+ display() : void

Presenter Notes
Presentation Notes
The display functions pull data from the part classes downward through the inheritance relationships, demonstrating using functions in classes connected by various relationships. Although the display function is simple, we can extend it to functions with non-empty parameter lists and non-void return types. Remarkably, adding composition and aggregation only requires changing the Person display function.

person::display

void Person::display()
{

cout << name << endl;
addr.display();
if (date != nullptr)

date->display();
}

Presenter Notes
Presentation Notes
The program calls functions in a composed object with the composition variable name and the dot operator. Equivalently, we can say that the Person object sends the display message to its composed part.
The program calls functions in an aggregated object with the aggregation pointer variable name and the arrow operator. Equivalently, we can say that the Person object sends the display message to its aggregated part. The if-test is necessary because attempting to call a function through a null pointer is a (generally fatal) runtime error.

ACTOR 3 CORE

Star
- balance : double
+ Star(n : string, a : string, b : double, s : string, c : string)
+ display() : void

Actor
- agent : string
+ Actor(n : string, a : string, s : string, c : string)
+ display() : void

Address
- street : string
- city : string
+ Address(s : string, c : string)
+ display() : void

Person
- name : string
+ Person(n : string, s : string, c : string)
+ Person(p : Person&)
+ ~Person()
+ setDate(y : ing, m : int, d : int) : void
+ display() : void

Date
- year : int
- month : int
- day : int
+ Date(y : int, m : int, d : int)
+ display() : void

Presenter Notes
Presentation Notes
With one exception, the inheritance core is largely unchanged from the previous examples. The exception is the number of parameters in each constructor function. Each constructor now includes parameters for the data passed upwards to the Address constructor.

Actor AND Star CONSTRUCTORS

Actor(string n, string a, string s, string c) : Person(n, s, c), agent(a) {}

Star(string n, string a, double b, string s, string c) : Actor(n, a, s, c), balance(b) {}

Presenter Notes
Presentation Notes
The Star constructor adds parameters for the Address’s street and city. It passes this data through the Actor constructor. The Actor constructor passes this data onto the Person constructor. Programmers must always call the inheritance constructors first in an initializer list.

	Actor 3
	Actor 3 UML Class Diagram
	Actor 3�Whole-Part
	Person.h (1)
	Actor 3 Constructors
	Aggregation alternative
	Person.h (2)
	Aggregation setter functions
	Actor 3�display
	person::display
	Actor 3 Core
	Actor And Star Constructors

