
CASTING AND MEMBER VARIABLES

Locating variables inside objects

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
While the compiler generates machine code, it must access the member variables and member functions that are part each object in our program. There are two kinds of member functions in an object: the “regular” functions that we have been using since we began our study of object-orientation and polymorphic functions, which are the topic of the current chapter. The compiler uses different algorithms to locate the member variables and “regular” member functions than it does to locate polymorphic functions. In this section, we focus our attention on member variables.

TYPICAL UPCASTING

• void render(Shape* s) { ... }

• Circle* c = new Circle;

• Shape* s = c;

• render(c);

Shape

Rectangle TriangleCircle

Presenter Notes
Presentation Notes
Previously, we demonstrated upcasting as an assignment operation: the left-hand side is a pointer of superclass type, but we instantiate an object from a subclass on the right-hand side. In this example, an instance of class Circle is cast or changed to a Shape – a cast upwards in the inheritance hierarchy. While an assignment makes the upcasting clearly visible, it’s not how upcasting usually takes place.
In practice, upcasting typically takes place when we call a function that has a parameter that is of superclass type and pass to it an instance of a subclass. Both examples result in a pointer to a Shape, variable s, pointing to a Circle object.
Sometimes it’s necessary for a function to downcast an object to its original class type so that it can access or reach the object’s member variables.

LOCATING BY OFFSET

315 Elm

+ 3

Presenter Notes
Presentation Notes
We begin with a simple analogy. Let’s suppose that we live in a house whose address is obscured – maybe a tree has grown large enough to obstruct the numbers on the front of the house or the numbers painted on the curb have faded. The directions that we give someone visiting us for the first time might begin with locating a distinctive house – in this example, a house the stands out because it’s painted pink. So, the directions might be, “I live in the third house up from the pink house.”
The pink house becomes the base address and three is the offset.
Let’s suppose that the addresses increase by 5 from one house to the next. We can find the address of the house with the orange roof with the following steps:
First, we note that the house we want is three houses up from the pink or base house
Second, we note that the addresses are increasing by 5 for each house
So, the address of the orange-roof house is 315 + 3 x 5, which is 330.

LOCATING MEMBER DATA

name

height

weight

name

height

weight

class Person
{
 private:

string name;
double height;
int weight;

};

Person* student
= new Person(…);

Person* instructor
= new Person(…);

student;

student + sizeof(name);

student + sizeof(name) + sizeof(height);

instructor;

instructor + sizeof(name);

instructor + sizeof(name) + sizeof(height);

Presenter Notes
Presentation Notes
A compiler uses a similar offsetting algorithm for finding the member variables in an object. Class Person has three member variables: name, height, and weight. As this section focuses on locating variables, no functions are included in the Person class. From the Person class, we instantiate two objects: student and instructor. Each object occupies a distinct location in memory and has its own, private copy of the three member variables.
The addresses stored in the two pointer variables, student and instructor, are like the pink house in the analogy – each one is a base address. The compiler locates a member variable in an object by calculating the size of each variable that comes before it and adding that value to the base address. So, to find the address or location of the weight member variable in the student object, the compiler adds the size of name to the size of height, and then adds the result to the address stored in student. Finding the location of the weight member variable in the instructor object is the same except that the sizes of name and height are added to the address stored in the instructor pointer variable.

INHERITANCE AND MEMBER VARIABLES

Person

-name: string

Employee

-id : int

-height : double
-weight : int

-phone : string

class Person
{
 private:

string name;
double height;
int weight;

};

class Employee :
public Person

{
 private:

int id;
string phone

};

Person

Superclass: nullptr

name type

name string
height double
weight int

Employee

Superclass: Person

name type

id int
phone string

name

height

weight

id

phone

Em
pl

oy
ee

 O
bj

ec
t

ceo

Presenter Notes
Presentation Notes
Inheritance adds a small amount of complexity to the task of locating member variables inside an object. The two classes illustrated in the UML diagram and in the C++ code are related by inheritance, and both classes contain member variables.
To generate the offset values, the compiler needs to "know" what member variables a class contains and the data type of each variable (from which it derives the variable's size). The compiler gets this information from the symbol table. The symbol table is a part of a compiler that temporarily stores information about the names given to programming elements like variables, functions, and classes. Information about inheritance is also stored in the symbol table and is used when locating member variables.

INHERITANCE AND MEMBER VARIABLES

Person

-name: string

Employee

-id : int

-height : double
-weight : int

-phone : string

class Person
{
 private:

string name;
double height;
int weight;

};

class Employee :
public Person

{
 private:

int id;
string phone

};

Person

Superclass: nullptr

name type

name string
height double
weight int

Employee

Superclass: Person

name type

id int
phone string

name

height

weight

id

phone

Em
pl

oy
ee

 O
bj

ec
t

ceo

Employee* ceo = new Employee(...);

Presenter Notes
Presentation Notes
Now, let’s suppose that we instantiate the subclass, Employee. We can abstractly represent the new object as the large rectangle. Recall that when a subclass is instantiated, part of the new object comes from the superclass while another part comes from the subclass. Each of these parts contains the member variables specified in the respective classes.
When the compiler needs to look up information about a class, including the information needed to calculate the offsets, it enters the symbol table using the class name used to type the pointer variable. In this example, the compiler enters the symbol table entry for class Employee, where it finds the information for the member variables id and phone. Also recall that inheritance is unidirectional, from the subclass to the superclass. This allows the compiler to navigate from the subclass or Employee symbol table entry to the superclass or Person entry. From there, the compiler can access the information needed to reach the name, height, and weight member variables.

INHERITANCE AND CASTING

• Person* ceo = new Employee(...);

Presenter Notes
Presentation Notes
By changing the class name used to define the pointer variable, we can perform an upcast operation, which, for simplicity, is again done with a simple assignment statement.

INHERITANCE AND CASTING

• Person* ceo = new Employee(...); Person

Superclass: nullptr

name type

name string
height double
weight int

Employee

Superclass: Person

name type

id int
phone string

name

height

weight

id

phone

Em
pl

oy
ee

 O
bj

ec
t

ceo

Presenter Notes
Presentation Notes
Now, when the compiler enters the symbol table, it does so through the Person class entry. Entering the symbol table at the Person entry means that the compiler can access the information about name, height, and weight, but what about id and phone? Again, recall that inheritance is unidirectional – the parent or superclass doesn’t “know about” the child or subclass. That means that the compiler is unable to access the information about id and phone. Although the id and phone member variables exist, because we instantiated an Employee object to begin with, those variables are not reachable through a Person pointer variable.

INHERITANCE AND CASTING

• Person* ceo = new Employee(...);

• Employee* temp = (Employee *)ceo;

Person

Superclass: nullptr

name type

name string
height double
weight int

Employee

Superclass: Person

name type

id int
phone string

name

height

weight

id

phone

Em
pl

oy
ee

 O
bj

ec
t

ceo

Presenter Notes
Presentation Notes
The only way that we can reach the member variables in the Employee or subclass object is to explicitly downcast the Person pointer to an Employee pointer.
Therefore, our next task is to better understand downcasting.

	Casting And Member Variables
	Typical Upcasting
	Locating by Offset
	Locating Member Data
	Inheritance And Member Variables
	Inheritance And Member Variables
	Inheritance And Casting
	Inheritance And Casting
	Inheritance And Casting

