PURE VIRTUAL FUNCTIONS AND
ABSTRACT CLASSES

And their connection to polymorphism

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Abstract classes are a fully supported feature of the object-oriented paradigm, but how they are implemented in specific programming languages varies considerably. For example, in Java, abstract classes are specified by adding the keyword “abstract” to the class declaration. A C++ class is made abstract by including in it one or more pure virtual functions.

POLYMORPHISM AND ALGORITHMS

+draw() : void

N

Circle Rectangle Triangle

+draw() : void +draw() : void +draw() : void

Presenter Notes
Presentation Notes
To help us better understand the role that pure virtual functions play, we return to the shape inheritance hierarchy seen throughout the chapter. All four classes specify a draw function. If we are tasked with defining the draw functions for the three subclasses, we know what a circle, a rectangle, and a triangle look like. Based on that knowledge, we could find formulas and convert them to C++ code that allow us to draw those shapes. But what does a shape look like? What formula, of all the possible shape formulas, do we use to draw a shape? The problem is that a “shape” is too abstract to draw.

PURE VIRTUAL FUNCTIONS
MAKES A CLASS ABSTRACT

Pure virtual functions
Don’t have a body (prototype = 0)

Must be overridden in all subclasses

pure virtual functions makes a class
abstract

Abstract classes cannot be instantiated

Abstract classes and functions are
denoted with italic characters in the UML

Shape

+draw() =0 : void

\

Circle

Rectangle

Triangle

+draw() : void

+draw() : void

+draw() : void

Presenter Notes
Presentation Notes
Pure virtual functions provide a simple, elegant solution for problems like the one posed by the Shape draw function. A pure virtual function does not have a body and therefore, it doesn’t implement an algorithm. Think of a pure virtual function as a placeholder: There is an entry in the symbol table for each pure virtual function, which supports all the polymorphic features describe previously, but the function itself doesn’t exist. Pure virtual functions must be overridden by all subclasses.
Including one or more pure virtual functions in a class makes the class an abstract class. Abstract classes may not be instantiated but can still be used as a data type in upcast operations. Abstract or pure virtual functions and abstract classes are denoted by writing their names in italic characters in UML class diagrams.

POLYMORPHISM AND ABSTRACTION

Polymorphism does not require pure Employee
virtual functions or abstract classes, but

+calc_pay() = 0: double
they are often used together to create ﬂx

general programming solutions.
SalariedEmployee

Calculating pay

-salary : double

+calc_pay() : double

salaried: salary / 24

sales: salary / 24 + commission
SalesEmployee

Employee e = new Employee;

-commission : double

+calc_pay() : double

e->calc pay();

Presenter Notes
Presentation Notes
Although polymorphism can take place without pure virtual or abstract functions, the two concepts are frequently used together to manage complex problems. But to help us better understand abstract functions and the role that they play in polymorphism, we begin with a simple problem.
We have three kinds of employees as represented by the UML class diagram. The topmost class, Employee, has a pure virtual function named calc_pay, and is therefore abstract. The SalariedEmployee class becomes concrete by overriding the calc_pay function with a concrete version. Salaried employees’ current pay is their annual salary divided by 24, assuming they are paid twice a month. The SalesEmployee class again overrides the calc_pay function. Sales employees are paid a salary plus a sales commission. But the salary member variable is “private” in the SalariedEmployee class and so is inaccessible from the SalesEmployee class. What we want is a general solution that that has two characteristics:
First, it allows us to elegantly calculate a SalesEmployee’s pay without violating encapsulation – that is, without weakening the protection afforded by making salary private in the SalariedEmployee class.
Second, the solution should call the correct calc_pay function regardless of which kind of employee we create. In this example, the underscore characters may be replaced by either Salaried or by Sales.

CHAINING FUNCTION CALLS

Employee

virtual double calc pay() = 0;

SalariedEmployee double calc pay()

SalesEmployee

{
return salary / 24;

}

double calc pay ()
{

return SalariedEmployee::calc pay ()

}

+ commission;

Presenter Notes
Presentation Notes
As in the past, polymorphism provides the solution. However, this time we begin with a pure virtual or abstract function in the superclass Employee. The SalariedEmployee function is quite straightforward, just returning the employee’s salary divided by 24. The SalesEmployee circumvents its inability to directly access the private salary member in the SalariedEmployee class by calling the SalaredEmployee’s public calc_pay function to calculate the salary portion of SalesEmployee’s pay and then adding the commission to the returned value.

ABSTRACT CLASSES CAN

not be instantiated

be a superclass (i.e., a parent or base class)

be used as a datatype (Employee* e;)

participate in (i.e., be the target of) an upcast (¢ = new SalesEmployee;)
participate in polymorphism

have concrete features (both variables and functions) that can be inherited by
subclasses

Presenter Notes
Presentation Notes
Summarizing some of the key concepts surrounding abstract classes:
Abstract classes cannot be instantiated, but they can still
be a superclass with subclasses, which allows it to
be a datatype,
which is often useful with the upcast operations needed by polymorphism
Abstract classes can have concrete features, both member variables and member functions, that can be inherited by its subclasses

	Pure Virtual Functions and Abstract Classes
	Polymorphism and Algorithms
	pure virtual functions�makes a class Abstract
	Polymorphism and Abstraction
	Chaining Function calls
	Abstract Classes can

