
PROCESSING FILES

Access order and size

Control: eof(), EOF, and operator bool

Delroy A. Brinkerhoff

Presenter
Presentation Notes
To process something means “to subject [it] to or handle [it] through an established, usually routine set of procedures.” When a program processes a file, it processes the data in transit between the program and the file. Programmers choose the order in which a program accesses the data and the access size. They control file access using the eof function, the EOF constant, or an overloaded bool conversion operator. In both the function and the constant names, EOF is short for “end of file.”

FILE PROCESSING ORDER

• Sequential

• Reads or writes data from beginning to end

• Random / Direct

• Read or write data in any order

• Access data by address

• Keyed / Indexed

• Requires a key or index file

Presenter
Presentation Notes
Programs generally access file data either sequentially or randomly. Sequential access starts at the file’s beginning for reading or writing, with the position pointer set to 0. Each read or write operation transfers a data unit and advances the position pointer by the transferred data’s size, preparing for the next I/O operation. This access order is the easiest to implement and the only one used up to this chapter.
Random access doesn’t mean a program accesses file data in an unpredictable order. Instead, it can access the data in any order, unconstrained by the limits of sequential access. This order is also known as direct because a program can directly access data by an index value or an address. A third access order, keyed or indexed, is implemented with two or more files using random access.

FILE PROCESSING DATA SIZE

• Physical access in fixed-sized blocks

• Operating system hardware storage

• Logical access in convenient units

• Characters or bytes

• Lines

• Logical blocks

Presenter
Presentation Notes
The operating system transfers data between primary and secondary memory (i.e., between main memory and persistent storage) in fixed-sized “chunks” called blocks. Alternatively, programs read and write files in logically-sized units. The units may be single characters, lines of text, or blocks corresponding to program objects – instances of structures or classes.

FILE PROCESSING SUMMARY

Order
Size

Sequential Random

Character Text & Binary

Line Text

Block Binary (infrequently) Binary

Buffer Text & Binary

Presenter
Presentation Notes
The table summarizes the typical access orders and transfer sizes that programs use to process textual and binary data. The examples appearing throughout the rest of the chapter focus on sequential access, but the text briefly demonstrates random and keyed access at the end of the chapter.

INCORRECT

ifstream file(file_name);

while (! file.eof()) // 1
{
 // read file // 2
 // process data // 3
}

ifstream file(file_name);

// initial file read // 1
while (! file.eof()) // 2
{
 // process data // 3
 // read file // 4
}

CORRECT

THE eof FUNCTION

Presenter
Presentation Notes
The pseudo-code uses the eof function to illustrate a problem arising when programs sequentially read characters from a file. Each stream object maintains four 1-bit flags representing its current state or condition. One of those flags, the eofbit, is 0 or false until the stream reaches the file’s end. If the read operation at step 2 successfully reads a character, it leaves the eofbit unset or 0. It only sets the eofbit to 1 or true when it attempts to read a character and finds no remaining unread characters – the stream is at the file’s end. The eof function returns true if the eofbit is set, false if it isn’t.
Therefore, the end-of-file test in step 1 is based on the result of the last read operation in step 2. Although the read operation will detect the end of the file and set the eofbit, the code attempts to process the failed input at step 3 before testing the eofbit at step 1.
The second example solves the problem by adding a read operation before the loop and rearranging the operations within the loop body. After this change, the test always follows a read operation without an intervening process operation.

SEQUENTIALLY READING CHARACTERS

int main()
{
 ifstream in("data.txt");
 char c;

 in >> c;
 while (!in.eof())
 {
 cout << '|' << c << '|' << endl;
 in >> c;
 }

 return 0;
}

• istream& operator>>(int& c);
• istream& get(char& c);
• int get();

Presenter
Presentation Notes
The example program demonstrates the correct pseudo-code pattern. A concrete read using the inserter operator replaces the pseudo-code’s abstract read operation, while a simple output statement stands in for the file processing.
The example uses the inserter operator to leverage our previous experience with it. However, one of the overloaded get functions is more common. The first version has a reference parameter, allowing it to return a character through the variable. Significantly, it returns a reference to a stream, which a subsequent example uses. The second version returns a character as an integer. The following example demonstrates how to use the returned value.

CHARACTER INPUT AND EOF

int main()
{
 ifstream in("data.txt");
 int c;

 while ((c = in.get()) != EOF)
 cout << (char)c << endl;

 return 0;
}

Presenter
Presentation Notes
Two features of this version benefit file processing. First, the test relies on the function’s return value, not on flag settings. Second, the grouping parentheses, highlighted in red, correctly order the read and test sequence: the read and assignment run first, and then the test, without an intervening process operation.

operator bool

• operator bool

• Overloaded casting operator

• Stream → Boolean

• failbit set if an I/O operation fails

• badbit set if a stream is corrupted

• The conversion operator returns true if
either flag is set, false otherwise

• Returns: !(failbit | badbit)

int main()
{
 ifstream in("data.txt");
 char c;

 while (in.get(c))
 cout << '|' << c << '|' << endl;

 return 0;
}

Presenter
Presentation Notes
The stream classes provide a conversion operator, “operator bool,” that creates an expression converting a stream to a Boolean value. It is more challenging to understand than the other file processing techniques, but using it is straightforward.
Conversion operators overload the casting operator. They convert or cast an instance of the specifying class to another data type: a class or a fundamental type. The example demonstrated here casts a stream to a Boolean value.
Like the eof function, the conversion operator relies on the stream’s flags, suggesting it suffers from the same lag between setting and testing the flags. Where the eof function depends on the single eofbit, the conversion operator uses two: the failbit and the badbit. It returns true while both bits remain unset and returns false if one or both are set.
Recall that this version of the get function returns a stream reference, allowing programmers to nest the read operation inside the loop. The get function returns a stream, and the conversion operator automatically converts it to a Boolean value, driving the loop. The conversion operator ends the loop when it reaches the end of the file. Furthermore, it ends the loop if the read operation encounters other errors and sets either of the error flags.

	Processing Files
	File Processing Order
	File processing data size
	File processing summary
	the eof function
	Sequentially reading characters
	Character input and EOF
	operator bool

