LINE |/O

Reading files one line at a time

Delroy A. Brinkerhoff


Presenter
Presentation Notes
The lines in a line-oriented file can take many forms, from free-form to highly structured. For example, the lines in a book may have a linguistic structure but are programmatically only a sequence of characters ending with a system-dependent line terminator. Conversely, spreadsheets and databases often export data as a comma-separated values (CSV) file. Each line in the file represents a spreadsheet row or a database record, with commas separating the columns or fields. C++ provides a family of functions that read lines, but relies on the inserter operator to write them.



LINE INPUT FUNCTIONS:
string CLASS

istream in("input.txt");

string s;

istream& getline(istream& in, string& s);

istream& getline(istream& in, string& s, char delim);



Presenter
Presentation Notes
Programs reading lines from a file can save the data in C-strings or instances of the string class. The string class functions require an input stream object, opened in text mode with either a full or relative path name and a string variable.
The two functions behave similarly by reading characters from the file and saving them in the string. The first function returns after reading and discarding the newline character. The second allows programmers to specify a delimiter – a character that separates parts of the line into meaningful units. It also returns after reading and discarding the delimiter.



LINE INPUT FUNCTIONS:
C-STRING

istream in("input.txt");

char s[n];

istream& getline(char* s,

istream& getline(char* s,

istream& get(char* s, int

istream& get(char* s, int

int n);

int n, char delim);

n);

n, char delim);



Presenter
Presentation Notes
Logically, the string and C-string versions behave the same but differ in the kind of variable that saves the data read from the file. The program creates a C-string as a character array large enough to hold the longest data item in the file. The video shows the array’s size as the variable n to connect the size to the functions’ parameters, but programs must use a compile-time constant when defining an array on the stack.
The “getline” functions read characters from the input file, saving them in the C-string variable, until they encounter the newline or delimiter, or they read n-1 characters. If they encounter the newline or delimiter, they discard it. The “get” functions operate similarly but leave the newline or delimiter in the input stream.



SINGLE READ PATTERNS

string CLASS C-STRING
string line; char line[100];
while (getline(input, line)) while (input.getline(line, 100))
{ {
// process line // process line
output << line << endl; output << line << endl;


Presenter
Presentation Notes
Embedding the “getline” function call inside the loop control allows programs to process files with a single input operation. “getline” returns an input stream, which a conversion operator converts to a Boolean value, driving the loop.



TWO-READ PATTERNS:

LINE LENGTH
string CLASS C-STRING

string line; char line[100];
getline(input, line); input.getline(line, 100);
while (line.length() > 9) while (strlen(line) > 0)
{ {

// process line // process line

cout << line << endl; cout << line << endl;

getline(input, line); input.getline(line, 100);


Presenter
Presentation Notes
Programs can also drive loops by testing the length of the input line, but this requires two read operations.



TWO-READ PATTERNS:
eof() FUNCTION

string CLASS

string line;
getline(input, line);
while (!input.eof())
{
// process line
cout << line << endl;
getline(input, line);

C-STRING

char line[100];
input.getline(line, 100);
while (!input.eof())
{
// process line
cout << line << endl;
input.getline(line, 100);


Presenter
Presentation Notes
Programmers can also use the “eof” function to read files by lines but use it less often than when reading by characters. Using the “eof” function also requires two read operations.



DELIMITED INPUT

John Smith:123 Elm St.:801-555-1234
John Smith,123 Elm St.,801-555-1234

string name;

getline(in, name, ':'); « getline(in, name, ',');

char name[20];

getline(name, 20, ':'); « getline(name, 20, ',"');


Presenter
Presentation Notes
Unlike character or block input, line input allows programmers to specify a delimiter character that separates parts of a line into related but distinct units. For example, a line may have three units: a person’s name, address, and phone number. Tab and colon characters are frequent delimiters in small system databases on POSIX systems, while, as the name suggests, commas delimit the fields in a CSV file. Notice there are no spaces around the delimiters, as they would become part of the adjacent fields.
Programmers specify the delimiter as the third function parameter. Furthermore, a series of “getline” function calls may have different delimiters.



	Line I/O
	Line input functions:�string class
	Line input functions:�C-string
	Single read patterns
	Two-read patterns:�line length
	two-Read patterns:�eof() function
	delimited input

