BULLETPROOF CODE (3)

Introduction To Regular Expressions

Delroy A. Brinkerhoff

Presenter
Presentation Notes
A regular expression, often called an RE, is a string of characters forming a metalanguage – a language used to describe another language – characterizing a specific pattern. Programs compare target strings, often user input, to regular expressions, accepting the target if it matches the expression’s pattern and rejecting it if it doesn’t.
The video is understandably difficult to watch because regular expressions are not easily assimilated in a rapid overview. Nevertheless, some contextualizing detail is necessary to give meaning to the examples. The C++ regular expression system is quite flexible, able to process many types of data, but the text and video simplify the presentation by restricting the discussion to REs using string objects. For more information, please refer to the text.

OPERATORS AND
META-CHARACTERS

X

Xyz
ASN L2 ()L 1() | ol
\c Pk
r+
[xy2] .
[az] r{n} r{n,}
[~xyz]

(r) (?:r)

r{m,n}

Presenter
Presentation Notes
Regular expressions consist of a rather arcane sequence of characters. Some, called atoms, represent characters that must appear in the input or target string — for example, the colons in each line of the Rolodex file. Fourteen characters have reserved meanings used to form complex patterns. To match the characters in a target string, expressions must escape the reserved characters to “hide” their reserved meaning. Subsequent examples illustrate some of the other symbols.

C++ REGULAR EXPRESSION
FUNCTIONS

smatch m; (a special case of the general match_results class)
regex(const char* re)

bool regex match(string& t, regex& re)

bool regex match(string& t, smatch m, regex& re)

string regex replace(string& t, regex& re, string& format)
bool regex _search(string t, regex& re)

bool regex _search(string& t, smatch m, regex& re)

Presenter
Presentation Notes
C++ provides programs with three functions, two with overloaded versions, for comparing target strings to RE. Some of the functions can save text that matches an RE in a matcher object; the version storing string objects is named “smatch.” The “regex” function translates or compiles a regular expression string into a software matching machine that compares the target string to the RE pattern. This video focuses on the “regex_match” functions, which determine whether the input matches the expression or not. Subsequent videos explore the other functions.

ROLODEX VERSION 1I:
DELIMITERS

Albert Einstein:Princeton, NJ:(456) 123-8765

string name;

getline(in, name, ':');
string address;
getline(in, address, ':');
string phone;

getline(in, phone, '\n');

Presenter
Presentation Notes
The first version of the Rolodex program read a file consisting of lines divided into three fields by colon delimiters and the end of the line. The program used the three-argument version of the “getline” function to read the individual fields and discard the delimiters. This approach only works if each line follows the expected pattern and fails if the line is empty or doesn’t have exactly three colon-separated fields per line.

ROLODEX VERSION 2:
STRING STREAMS

string line;

getline(in, line);

if (line.length() == @ || line[@] == '#')
continue;

istringstream input(line);

getline(input, name, ':');

getline(input, address, ':');

getline(input, phone, '\n');

Presenter
Presentation Notes
The second version partially solves the problem: A program can read an entire line from the file and test its length, detecting when the line is empty. However, once the program reads the line, parsing it is more difficult than reading it one field at a time. Version 2 solves this problem by constructing an input string stream with the whole line. The program can still read individual fields as before, but it now reads from the string stream instead of the file. However, this approach doesn’t detect malformed patterns.

ROLODEX VERSION 3:
REGULAR EXPRESSIONS

//if (! regex _match(line, regex(".+:.+:.+")))

//if (! regex_match(line, regex("[":]+:[":]+:[":]+")))

if (! regex_match(line, regex("[*:]+(:[*:]1+){2}")))

continue;

Presenter
Presentation Notes
The third version uses regular expressions to create a more robust and complete solution. The example presents three different expressions, demonstrating the typical organization of the “regex” function call nested within the “regex_match” call. The red colons in the regular expression correspond to the delimiting colons in each line of the register file, aligning the sub-expressions with the data fields.
The dot or period in the first expression matches any non-line-terminating character. The plus symbol is one of three simple quantifiers. Each quantifier operates on the preceding sub-expression, a colon in this example. The plus operator requires one or more occurrences of the expression, while the asterisk or star requires zero or more, and the question mark requires zero or one.
The “.+” expression is greedy, matching as much of the target as possible, including the colons. However, if it’s too greedy, it can’t match the colons in the target, forcing the matching machine to back up to match the colons. It can reject empty lines or lines with fewer than three fields. Unfortunately, it treats the third and subsequent colons as “any character,” failing to detect lines with too many fields.

ROLODEX VERSION 3:
REGULAR EXPRESSIONS

//if (! regex _match(line, regex(".+:.+:.+")))

//if (! regex_match(line, regex("[":]+:[":]+:[":]+")))

if (! regex_match(line, regex("[*:]+(:[*:]1+){2}")))

continue;

Presenter
Presentation Notes
The second attempt solves the problem with a more complex expression. The square brackets form a set allowing the matching machine to match any character in the set. For example, the expression “[xyz]” instructs the machine to match one of x, y, or z. Inside the square brackets, the caret negates the match, so “[^xyz]” matches any character except x, y, or z. The sub-expression “[^:]+” matches one or more characters except a colon, effectively forcing the machine to stop when it reaches a colon, allowing it to detect when the input line has too many fields.

ROLODEX VERSION 3:
REGULAR EXPRESSIONS

//if (! regex _match(line, regex(".+:.+:.+")))

//if (! regex_match(line, regex("[":]+:[":]+:[":]+")))

if (! regex_match(line, regex("[*:]+(:[*:]1+){2}")))

continue;

Presenter
Presentation Notes
The third and final expression uses a quantifier, making it work like a for-loop. Notice that each line has three fields and two colon delimiters, making it look like “the fence post problem.” Accordingly, the expression handles the first field separately, stopping at the first colon. The red parentheses form a group consisting of a colon followed by one or more non-colon characters. The braces form a quantifier specifying that the target must have exactly two occurrences of the grouped pattern. It’s tempting to spread out the expression elements with spaces to make them easier to read, but, like the colons, that would require matching spaces in the input.

CHECKBOOK VERSION |[:
DELIMITERS

419 :Dec 5:Hardware Store:47.89
Deposit:8/19/2006:-:150.00

double amount;
string type;

input >> amount;

if (type == "Deposit" || type == "deposit")
balance += amount;

else
balance -= amount;

Presenter
Presentation Notes
The checkbook program simulates a paper checkbook register with colon-delimited lines in a file. Each line consists of four fields, the first distinguishing between a written check and a deposit, and the last indicating the amount. The program reads the first three fields with the “getline” function and the last one with the extractor operator. The previous version read the whole line from the file, allowing it to detect empty lines, then created an input string stream and read the fields from it. The first version also allowed users to spell the word “deposite” with an initial upper or lowercase letter, a feature we wish to retain, but it was unable to detect any formatting errors.

CHECKBOOK VERSION 2:
REGULAR EXPRESSIONS

419:Dec 5:Hardware Store:47.89
Deposit:8/19/2006:-:150.00

string re = "([Dd]eposit|[1-9][0-9]*):[*:]+:[~:]+:\\d*\\.\\d{2}";

if (! regex_match(entry, regex(re)))

continue;

Presenter
Presentation Notes
The first field can be a check number or the word “deposit.” The vertical bar symbolizes the regular expression “or” operator separating the alternatives. The left-hand sub-expression accepts the word “deposit.” The square brackets form a set matching either an uppercase or lowercase D. The first pair of brackets in the right-hand sub-expression forms a range accepting a single digit from 1 to 9, while the second range also accepts a 0. The asterisk or star, operating on the second range, accepts zero or more digits.
The middle sub-expressions operate as previously described: each accepts one or more characters but stops when it encounters a colon.
The last sub-expression uses the \d meta-character to represent any digit. However, strings use the backslash as an escape character, requiring an additional backslash to escape the first. The star operator repeats the digit-string zero or more times. The red period is the decimal point in the amount field. The dot is an RE meta-character that matches all non-line-termination characters, so programmers must escape it. The sub-sub-expression at the end requires two digits. Therefore, a matching amount pattern consists of zero or more digits, a decimal point, and two digits. How would you change the expression to require at least one leading digit or to make the decimal point optional?

	Bulletproof Code (3)
	Operators and�meta-characters
	C++ regular expression�functions
	Rolodex version 1:�delimiters
	Rolodex version 2:�string streams
	Rolodex Version 3:�regular expressions
	Rolodex Version 3:�regular expressions
	Rolodex Version 3:�regular expressions
	Checkbook version 1:�delimiters
	Checkbook version 2:�regular expressions

