
SWITCH STATEMENTS

Multiway Branch

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Switch statements provide a compact but limited multi-way branch.

BASIC SWITCH SYNTAX

The test expression must be integer-valued, is
often just a variable.

The target for each case must be an integer
constant.

switch (expression)
{

case c1:
statement0;
statement1;
break;

case c2:
statement3;
statement4;
break;

case c3:
statement5;
statement6;
break;

case c4:
statement7;
statement8;
break;

default:
statement9;
statement10;
break;

}

Presenter
Presentation Notes
The typical, basic switch statement consists of an integer-valued expression, often just an integer variable, and a sequence of case statements. Each case has an integer constant value, one or more statements, and ends with a break. However, numerous variations on this typical or basic organization are possible and the variations can make switch statements quite complex. The “default” clause, which runs if none of the case values match the test expression, is optional and may be placed anywhere within the switch, not just at the end.

BASIC SWITCH BEHAVIOR

The expression is compared to the cases from
top to bottom.

Cases match the expression on strict equality.

Execution continues until a break.

exp == c1

exp == c2

exp == c3

default

false

false

false

statement 0;

statement n;

break;

true

statement 0;

statement n;

break;

true

statement 0;

statement n;

break;

true

statement 0;

statement n;

break;

switch (exp)
Evaluate

exp

Presenter
Presentation Notes
In operation, the test expression is evaluated and the result is compared, one at a time to the case values. The cases are examined from the top of the switch downward. As soon as the switch expression matches (that is, is equal to) a case value, the corresponding statements begin running and execution continues until either a “break” statement is encountered or until the end of the switch is reached.

FALL THROUGH

. . .
case c2:

statement0;
statement1;
statement2;
// fall through

case c3:
statement3;
statement4;
break;
. . .

exp == c2

exp == c3

false

false

statement 0;

statement n;

statement 0;

statement n;

break;

true

true

Presenter
Presentation Notes
One of the potentially confusing but ultimately powerful switch variations is when one case “falls through” to the next case below. This behavior is accomplished by leaving out the break statement. The structure allows running some statements (those shared by cases c2 and c3) without duplicating the code, while at the same time allowing one case (c2) to have statements that are independent of the other case (c3).

“OR” CASES

exp == c2

exp == c3

false

false

statement 0;

statement n;

break;

true

true

.

.

.
case c2:
case c3:

statement0;
statement1;
break;

.

.

.

Presenter
Presentation Notes
Another potentially confusing but useful variation occurs when two cases are positioned next to each other without any intervening statements. In this situation, you can think of the code as saying, “case c2 OR case c3,” that is, run the statements whenever the test expression is c2 or c3.

CASES AND SCOPE

switch (expr)
{

case c1:
{

int counter;
. . .
break;

}
case c2:
{

int counter;
. . .
break;

}
}

switch (expr)
{

case c1:
int counter;
. . .
break;

case c2:
int counter;
. . .
break;

}

Presenter
Presentation Notes
It is important to recognize that a case does not create a new scope. That means that we must be cautious whenever we define a variable within a case. The example on the left will not compile because both variables named “counter” are defined in the same scope, which violates one of the variable definition rules given in chapter 2. Braces can be added so that each case forms a distinct scope. The textbook shows additional examples related to defining and initializing variables in cases.

	switch Statements
	Basic Switch Syntax
	Basic Switch Behavior
	Fall Through
	“OR” Cases
	Cases And Scope

