SWITCHES VS. IF-ELSE LADDERS

Multi-way Branches

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Programmers can create a multi-way branch with either a switch statement or with an if-else ladder. The following brief discussion compares the two constructs.

SWITCH

Single test expression

Only integers

Expression compared to constants
Implied ==

Implied logical-OR

switch

{

(choice)
case 'A'
break;
case 'B'
break;
case 'C' :
break;
default

break;

Presenter
Presentation Notes
The “switch” keyword introduces the single test expression, which can be arbitrarily complex but is quite often just a variable. Simple or complex, it must be an integer-valued expression, that is, the result must be an integer type. Integer types include character, short, int, and long, but exclude float and double. Similarly, the targets of each case must be an integer type. Furthermore, the case targets must be constants – variables or more complex expressions are not permitted.
Although the switch syntax doesn’t use any explicit relational operator, the tests are all implicitly for equality. So, in this example, the switch is testing to see if the value in the variable “choice” is equal to ‘A’ or if the value is equal to ‘B,’ et cetera.
If there are two or more cases that are not separated by a break or a return, they form an implied logical-OR. Switch statements are not capable of more complex logical operations.
Switch statements are simple and therefor somewhat limited in their expressive capability. But they are also compact, and once you understand their behavior, easy to read and understand.

|IF-ELSE LADDER

i1f (choice == 'A")
Each branch requires an expression {
All data types }
. else 1f (choice == 'B'")
Expression compared to constants, {
variables, function calls, other expressions \
== <, <= > >= else 1f (choice == 'C')

&&, ||, !

Presenter
Presentation Notes
If-else ladders are more expressive and only slightly more complex than are switch statements. First, each branch is formed by an if sub-statement that requires its own test expression. Requiring a separate expression for each branch increases the size and complexity a bit, but it also increases the flexibility of the branch. For example, unlike the single test of a switch statement, each test in an if-else ladder could be based on a different variable.
Furthermore, the test expressions in an if-else ladder can utilize all data types, including float and double. And the tests are not limited to comparing the result of an expression with a constant value – the targets can also be variables, function calls, and any other valid expression.
The test expressions can also make use of the full range of relational and logical operators, which makes available the full expressive power of the programming language.

SIMPLE BRANCH

switch (choice) if (choice == 'A")
{ {
case 'A' :
.. }
break; else if (choice == 'B'")
case 'B' : {
break; }
case 'C' : else 1if (choice == 'C")
... {
break;
default : }
else

Eréak; {

Presenter
Presentation Notes
In simple situations, programmers are free to choose which construct to use – it’s largely a matter of personal taste and style. Personally, I like the compactness and simplicity of switch statements, but you’re free to choose what works best for you.

	Switches vs. if-else Ladders
	Switch
	if-else ladder
	Simple Branch

