THE FENCE POST PROBLEM

The Off By One Problem

Delroy A. Brinkerhoff

Presenter
Presentation Notes
When using loops, especially for-loops, programmers often encounter two related problems: the off by one problem and the fence post problem, which is a special case of the off by one problem.

THE OFF BY ONE PROBLEM

for (int 1 = 1; 1 < 10; 1i++) for (int 1 = 1; 1 <= 10; i++)
i: 1 - 9 i: 1 - 10
for (int 1 = 0; 1 <= 10; 1i++) for (int i = 0; 1 < 10; i++)

i: 0 - 11 i: 0 -9

Presenter
Presentation Notes
When writing a for-loop, it’s very easy to loop one time too few or one time too many. Generally, programmers solve this problem just by focusing on where the loop begins and where it ends. If the loop just repeats its body a certain number of times, then it doesn’t matter which solution the programmer uses. However, if the loop control variable appears in the body of the loop, then the beginning and ending values of the control variable must match the overall problem that the program solves.

THE FENCE POST PROBLEM

Loops execute a group of operations

The fence post problem arises when one
operation doesn’t fit in the loop

Three choices for the loop body
post, if not the last post, span

post and span — last post as a special case

first post as a special case - span and post

Presenter
Presentation Notes
The fence post problem takes the off by one problem a step farther. Loops are used to repeat a group of operations over and over. In terms of the fence post problem, the group of operations is to set a fence post and then to add a span of fence. But if the loop repeats the pattern of setting a post and installing a span of fence, the loop ends without a post at the end. But, if the order is reversed to install a span then a post, it produces an overall result without the first post.
We can solve the problem three ways:
The body of the loop sets the post, then, with an if-statement, we ask if it’s the last post, if it isn’t, install a span of fence. But the repeated if-statement reduces the efficiency of the loop, albeit by a small amount.
We can treat the first post as a special case, which means that we set the post and then enter the loop to finish the fence.
We can treat the last post as a special case, which means that we enter the loop first. The loop creates most of the fence. After the loop finishes, we have a final operation that sets the last post. This is my personal favorite solution.

THE FENCE POST IN A PROGRAM

* A[BICIDIE|IF|GIHII|JIKILIMIN[OIP[QIRISITIUIVIW[X]|Y]|Z

letter letter letter letter

Presenter
Presentation Notes
We illustrate the last solution of the fence post problem with a simple programming task: printing the letters of the alphabet separated by the vertical bar or pipe symbol. Notice the sequence does not begin or end with the bar character. So, the letters are like the posts and the bar is like the spans.

PROGRAMMING THE FENCE POST

for (char c¢c = "A'; ¢c < 'Z'; c++)

cout << ¢c << "|";

letter letter letter letter

cout << 'Z' << endl;

Presenter
Presentation Notes
The code fragment begins with a for-loop that prints the letters and most of the vertical bars. The last letter is a special case that is printed outside and below the loop. The textbook presents code fragments for the other two solutions.

	the fence post problem
	The Off by One Problem
	The Fence Post Problem
	the Fence Post In a Program
	Programming the Fence Post

