
SOLVING THE
WORD COUNT PROBLEM

Develop the algorithms before programming

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The Unix and Linux operating systems have a nifty little utility called wc, short for word count, that counts the words in a text file. It also counts the characters and the lines. To demonstrate a slightly more complicated switch statement, and some other control statements as well, the next example implements a simplified version the wc utility.
I firmly believe that the major task of computer scientists is to solve problems – we just express the solutions in a different way than other problem-solving disciplines. To that end, we begin this demonstration by solving the problem before we start writing code. That means that we must carefully define the problem and identify and develop the needed algorithms.



TEST CASE

See the\n
quick red\n
fox

• 3 lines

• 5 words

• 17 letters / alphabetic characters

• 2 spaces

• 2 new-line characters

COUNTS

TEST CASE

Presenter
Presentation Notes
Our first step is to create a test case so that we have more confidence in our programmed solution once it’s complete. The test case also provides a concrete example that we can use to help us understand the problem and with which we can develop our algorithms.
The test case consists of three lines, five words, and 21 characters – that is, 17 letters + 2 spaces + 2 new-lines for a total of 21. Seventeen characters are visible: the upper- and lower-case letters. If the test case contained numbers or punctuation marks, they would also be visible. The spaces between the words on the first two lines are also characters. Finally, the new line characters, highlighted in red, are also characters – backslash-n is an escape sequence formed by two characters used to represent one otherize invisible character.



WORDS

• Definition: Words are groups of 
characters separated by white space

• Use a Boolean flag: in_word

• quick red

See the\n
quick red\n
fox

LINES

COUNTING:
READ INPUT ONE CHARACTER AT TIME

Presenter
Presentation Notes
Our program will read the file one character at a time, which makes counting the characters very easy: each time the program reads a character, it simply increments the character count by one. Counting the words and the lines are a bit more difficult.



WORDS

• Definition: Words are groups of 
characters separated by white space

• Use a Boolean flag: in_word

• quick red

See the\n
quick red\n
fox

LINES

COUNTING:
READ INPUT ONE CHARACTER AT TIME

Presenter
Presentation Notes
First, we must define what we mean by a word. Our definition is very simple: a word is a group of characters separated by white-space, where white-space may be a space or blank character, a horizontal tab, or a new-line. Digits and punctuation characters are treated just like the letters A through Z.
For the basic algorithm, the program will count a word when it reads the first character of the word. As it reads the file one character at a time, how will it “know” which character is the beginning of a word? We’ll use a Boolean flag named “in word” – a variable that remembers if we are currently reading characters inside a word or not.
The program begins with the flag set to false, and when it reads the first character of a word, it counts the word and sets the variable to true. While the flag is set to true, it counts the characters read but doesn’t count a new word. When the program reads a white-space character, the flag is set to false. When it reads the next non-white-space character, it counts another word and sets the flag to true again.



WORDS

• Definition: Words are groups of 
characters separated by white space

• Use a Boolean flag: in_word

• quick red

See the\n
quick red\n
fox

LINES

COUNTING:
READ INPUT ONE CHARACTER AT TIME

Presenter
Presentation Notes
C++ provides functions that can read a text file one line at a time but doing so makes it more difficult to count characters and words. So, we need to develop an algorithm that can count lines when the file is read one character at a time. Since the program reads the file one character at a time, the algorithm should focus on individual characters.
The escape sequence highlighted in red represents a single new-line character. While counting new-line characters satisfies our requirements, it also introduces an inescapable problem: different computer systems often behave in different ways. The text editor programs used by Unix and Linux systems typically put a new-line character at the end of every line. That means that if a person ends a line with a new-line character, for example, by pressing the “Enter” key, the last line of the text file ends with two new-line characters. The editors used on a Windows system typically don’t do this.
The test case pictured here, as created by the Visual Studio editor, only has new-line characters between the lines, yet most people would say that the test case represents three line of text. We’ll solve this problem by starting the program with the line count beginning with 1 rather than with 0. (If we create the test case file with the vi text editor, the character count will be 22 rather than 21 characters.)



VISUAL STUDIO COMMAND LINE

POSITIONING THE INPUT FILE:
THE CURRENT WORKING DIRECTORY

Presenter
Presentation Notes
Our last problem is where, in the file system, should we place our test case or input file? Whenever the operating system runs a program, it gives the program a location or position in the file system. This location is called the current working directory. Keeping the demonstration simple, we want the test case file located in the program’s current working directory. Unfortunately, how we run or start the program can change it’s working directory.
For example, if we run the program from inside of Visual Studio, then the project folder becomes the current working directory. So, we want the test file located in the project folder. However, if we run the program from the command line, then the Debug folder, the one that’s just under the solution folder and contains all the executables from all the projects, becomes the current working directory. In that case, the test file should be in the Debug folder.


	Solving the�Word Count Problem
	Test Case
	Counting:�Read input one character at time
	Counting:�Read input one character at time
	Counting:�Read input one character at time
	positioning The Input File:�The Current working directory

