STRUCTURES AND POINTERS

Pointers To Structures

Delroy A. Brinkerhoff

Presenter
Presentation Notes
We learned in chapter 4 that it is possible to take the address of and to have a pointer to any kind of data in a program, which includes structures. This section covers the concepts and the notation involved in these processes.

POINTING TO A STRUCTURE

struct student

sl

{ spl
int id;
string name;
double gpa;
i
sp2

student sl =

{ 123, "dilbert", 3.0 };
student* spl = &sl;
student* spZ2 = new student;

id 123

name | dilbert

gpa [3.0

«]

name |

gpa |

Presenter
Presentation Notes
This example begins by reiterating the student structure introduced in previous examples. The first statement creates a structure object named s1 as an automatic variable on the stack. The second statement takes the address of s1 with the address of operator and stores that address in the pointer variable named sp1. Alternatively, we can instantiate an instance of student dynamically with the new operator; the address of this new object is also stored in a pointer variable but named sp2 in the third statement. An abstract representation of what is taking place in main memory is illustrated on the right. Notice that s1 and sp1 are alternate names or aliases for the same object.

MEMBER SELECTION REVISITED

cout << sl.id << endl; .
cout << spl->name << endl; Sl . ld
cin >> Sp2—>gpa;

spl—->name

Presenter
Presentation Notes
We still use the dot operator to select a member or field in a structure object created as an automatic variable. But we now use the arrow operator when selecting a member through a pointer. Notice that this is true independent of how the object was created: either with the new operator or by taking the address of an automatic variable.

MEMBER SELECTION REVISITED

cout << sl.id << endl; .
cout << spl->name << endl; Sl . ld
cin >> Sp2—>gpa;

spl—->name

Presenter
Presentation Notes
Repeating the rule for choosing the correct selection operator: If the left-hand operand is a pointer to a structure object, use the arrow operator; otherwise, use the dot operator.

INDIRECTION / DEREFERENCING

sp2 >
student* sp2 = id 987
new student { 987, "alice", 4.0 }; name | alice
gra |4.0 |
student s2 = *sp2; o
id 987

name | alice

gpa |4.0 |

Presenter
Presentation Notes
An interesting problem occurs sometimes when working with pointers. Suppose that we create a new instance of a structure object dynamically with the new operator. Naturally, we store the address that new returns in a pointer variable. But what do we do if we need a structure rather than a pointer to a structure? This happens sometimes when we want to call a function that requires a structure and not a structure pointer.
We can solve this problem by using the dereference operator. Recall from the previous section that when used with structures, the assignment operator copies the original structure object. So when we use the assignment operator with the dereference operator, we can copy an object created with new on the heap to an automatic variable whose memory is allocated on the stack. This also works when we need to pass a dynamic object, whose address is stored in a pointer, to a function that requires a non-pointer as an argument.

STRUCTURES AS FUNCTION
ARGUMENTS

void print (student temp)
{

cout << "ID: " << temp.id << endl;
cout << "Name: " << temp.name << endl;
cout << "GPA: " << temp.gpa << endl;

void print(student temp)

{
temp s2

id 456 id 456

print (s2); name | alice | *{ name | alice

gpa |[4.0 | gpa [4.0

Presenter
Presentation Notes
When we pass a structure as a non-pointer, we still use the dot operator to select the members or fields in the structure argument.

POINTERS AS FUNCTION ARGUMENTS

vold print (student* temp)

{

cout << "ID: " << temp->id << endl;
cout << "Name: " << temp->name << endl;
cout << "GPA: " << temp->gpa << endl;

void print(student™ temp)

{ s2
print (&s2) ; temp id | 456
student* s3 = new student; ““‘—————_____>rmme alice
print (s3) ; gpa [4.0

Presenter
Presentation Notes
However, when we pass a pointer to a structure, we must continue to use the arrow operator to select the members in the structure to which the pointer argument points. Again, this is true both when the address of an automatic variable is found with the address of operator and when the address was returned by the new operator. It’s important to notice that there is only one structure and that the function points to that structure with a pointer variable, that is, with a pointer argument.

IN AND OUT ARGUMENTS

void read (student* temp)

{

cout << "Enter a student id: ";
cin >> temp->id >> endl;

cout << "Enter a student name: ";
cin >> temp->name >> endl;

cout << "Enter a student gpa: ";
cin >> temp->gpa >> endl;

}

student

read (&s) ;

1A

1A

Sy

Presenter
Presentation Notes
Finally, we get to one of the most important aspects of passing structures as pointers. Furthermore, in the next chapter, we’ll discover that what learn here about structures applies broadly to all data, not just to structures.
When we pass a structure as a non-pointer to a function as an argument, the information contained in the structure is able move in only one direction: into the function. That is, when passed as a non-pointer, the structure is copied from the point of the function call into one of the function’s arguments, which is implemented as an automatic variable created on the stack. If the structure argument is modified, the modification takes place only to the function’s local copy. When the function ends, the local structure copy, along with any changes made to it, are discarded. That is, the local arguments are popped of the stack when the function ends. These kind of arguments are said to be input arguments only.
Alternatively, we can pass a structure into a function as a pointer. Now there is really only one structure object but it has two names. In this example, the name s appears where the function is called, but inside the read function, the same object is known as temp. Now, if we alter the temp argument, for example by storing data into the members, the data is actually stored in structure s. This is an example accessing a variable indirectly – that is, we can access s without using the name s. Pointer variables are both input and output variables – information can travel in both directions: into the function and out of the function.

	Structures And Pointers
	Pointing To A Structure
	Member Selection Revisited
	Member Selection Revisited
	Indirection / Dereferencing
	Structures as Function Arguments
	Pointers As Function Arguments
	In and Out arguments

