FUNCTION
DEFINITIONS AND DECLARATIONS

Creating and Describing Functions

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Java makes no distinction between a definition and a declaration, but the differences are very important to C++. The Java compiler scans each source code file twice: the first time it treats the code as declarations and the second time it treats the code as definitions. But a C++ compiler scans each source code file only once, which means that programmers must manually supply declarations.

DECLARATION VS. DEFINITION

Declaration stores information about a function in the symbol table
name of variable or function
number and type of parameters
type of variable or return value type of function
Definition uses memory
contents of variable
store machine instructions generated from function

the function’s location in memory is added to the symbol table

Presenter
Presentation Notes
Recall from chapter 1, that the purpose of a declaration is to introduce a name to the compiler along with a description of the name. The compiler stores the information in an internal table called the symbol table. This is an accurate description of both a variable declaration and a function declaration. Definitions, on the other hand, use memory. A variable definition requires memory to store the variable’s value, while a function definition requires memory to hold the machine instructions generated from the function source code.

RELATIONSHIP BETWEEN
DEFINITIONS AND DECLARATIONS

DEFINITION DECLARATION / PROTOTYPE

double foo(int x, double y, char z) double foo(int x, double y, char z);
{

or
double foo(int a, double b, char c);
} or

double foo(int, double, char):;

Some code can serve as both a declaration and a definition

Presenter
Presentation Notes
A function declaration consists of the same information that appears in a function header: the name, the number and type of parameters, and the return value type. Note that the variable names appearing in the prototype may be the same as those appearing in the definition, or they may be different, or they may be omitted from the prototype altogether.
The difference between a function definition and a function declaration or prototype is that a definition has a body. It is the code generated from the body that uses memory. When the compiler generates machine code from a function, the address where the machine code is stored in memory is added to the function information stored in the symbol table.
Finally, some code can serve as both a declaration and as a definition.

FUNCTION PROTOTYPES
FUNCTION DECLARATIONS

Function prototypes have three components
Name
Return value type
Parameter list
Prototypes permit the compiler to
Verify that calls are correct (number and type of arguments)
Perform appropriate conversion on arguments and return values

C++ requires a declaration or prototype to compile

Presenter
Presentation Notes
A function declaration is so important in C++ that it has its own name: it’s called a function prototype. Prototypes have a function name, a return value type, and a parameter list. Prototypes allow the compiler to validate that a function call is correct and assists the compiler in creating appropriate type conversions. This assistance is so important that C++ will not compile a function without an appropriate prototype. We explore how prototypes support the compilation process next.

VERSION |
THE C PROGRAMMING LANGUAGE

int main ()

{
double vy;

y = sqr(2);
}

double sqgr (double x)
{

return x * x;

}

Presenter
Presentation Notes
We begin by exploring the behavior of a program written in the C programming language before prototypes were added to it.
The compiler reads the source code only once, from the top of the file to the bottom. The body of main first defines variable y to be type double. The problems begin with the next statement, which is a call to a function named sqr. Without having seen the function’s definition or prototype, the compiler must make three “guesses” about how the function operates. (In reality, the compiler doesn’t really guess but rather uses a set of default rules.)
It assumes that since the function call has one argument that the function requires one parameter. So far, so good.
It assumes that since the argument is type int that the function parameter must be type int. But, if we look ahead, we see that the parameter is really a double. The compiler generates code to pass an integer, which is half the size of and a completely different bit-pattern from a double.
Finally, the compiler assumes that the square function returns an integer, which again is incorrect. Since the return value is stored in the double variable y, the compiler generates code to convert the supposed integer returned from square into a double.
When the function is called, the integer 2 is passed unmodified into x where it is treated as a double, which means that it is essentially a garbage value at this point. The function squares and returns the garbage, where the compiler converts the integer garbage into double garbage. With all of the incorrect processing taking place, there is no chance that the variable y contains anything useful.

VERSION 2
DEFINITION AND DECLARATION

double sqgr (double Xx)
{

return x * x;

}

int main ()
{
double vy;
y = sqr(2);
}

Presenter
Presentation Notes
In the second version of the same program, we move the square function to before the main function, where it serves as both a declaration and a definition. The compiler again reads the file once from top to bottom. The first thing the compiler sees is the square function and, since this is the first time that it has encountered the function, it treats the header as a prototype, that is, it enters the function name, return type, and parameter list into the symbol table. But this code also has a body, so the compiler generates the function’s machine code now.
When the compiler reaches the function call, it has the necessary information about the function to generate a more accurate call. Specifically, it converts the integer 2 into a double before passing it to the function. Furthermore, it “knows” that the function returns a double value and so it does not convert the returned value before storing it into variable y.

VERSION 3
SEPARATE PROTOTYPE AND DEFINITION

double sgr (double x);

int main ()
{
double v
y = sqr(2);
}

double sgr (double x)
{

return x * X;

}

Presenter
Presentation Notes
The third and final version of the program presents a typical arrangement. When the compiler reads the file from top to bottom, it finds the function prototype and adds the information about the square function to the symbol table. When it encounters the square function call, it has most of the information needed to compile the call: the number and type of the parameters and the return value type. What it doesn’t have is the address of the square function machine instructions. That last bit of information is take care of by the linker, the last component in the compiler system.

WHY PROTOTYPES (I)?

filel.cpp file2.cpp

struct G { . . }; G a = { . . };

int f£(G x) int b = f(a);

Presenter
Presentation Notes
The second version of the program managed to get by without a prototype, so why do we need them? Two situations require prototypes. First, consider two files. Suppose that a function is defined in one file (and just for good measure, a structure specification is also present in that file). A second file contains a call to the function. The problem is that while the compiler is processing file2, it doesn’t see file1 or its contents. So, how does the compiler process the function call? The answer is that file2 must have a prototype for function f. Since file2 is also using structure G, file2 must also see a structure specification for structure G. The common way of solving both problems is to have a header file with the structure specification and the related function prototypes.
Our programs have been following this pattern all semester long. For example, cout is an instance of a class named ostream and the inserter operator, the two arrows that point to the left, is really a function. Both the class specification for ostream and the function prototype for the inserter operator are in the iostream header file that we include in all of our programs.

WHY PROTOTYPES (2)?

Presenter
Presentation Notes
The second situation that demands prototypes is recursion. Notice that in this example, function a calls function b, and that function b calls function a. How can we possibly define both functions first? Of course, we can’t, so we must use prototypes. Recursion cannot be represented by a decomposition tree as illustrated previously and is covered in a later section in this chapter.
Finally, even in cases where it is possible to define every function before it is called, doing so might be quite difficult. If a program has hundreds or thousands of functions, imagine how difficult it might be to order those functions so that each is defined before it is called. It’s much easier to place the functions where it is convenient or where it is logical to do so and let the prototypes take care of the declarations.

FUNCTIONS AND TYPES

Function definition
Has typing information
Has a body
Function prototype (declaration)
Has typing information
No body; ends with a semicolon
Function call

Does NOT have typing information

Definition

int max(int x, inty) { return (x >y) ? x :y; }
Prototype (declaration)

int max(int x, int y);

int max(int, int);
Call

max(10, 20);

max(a, b);

Presenter
Presentation Notes
In review, there are three places where a function name can appear: a definition, a prototype, and a call.
Function definitions have full typing information for each parameter and the return value.
Prototypes also have full typing information for each parameter and the return value. Notice also that variable names may appear in a prototype but are not required.
Function calls do not have any typing information. It’s tempting for new programmers, when they see the data types in a prototype, to copy those types into a function call. But function calls only require the data itself.

	Function�Definitions and Declarations
	Declaration vs. definition
	Relationship Between�Definitions and Declarations
	Function Prototypes�Function Declarations
	Version 1�The C Programming Language
	Version 2�Definition and Declaration
	Version 3�Separate Prototype and Definition
	Why Prototypes (1)?
	Why Prototypes (2)?
	Functions and Types

