
PASS BY REFERENCE

Easy to use but not usable in all situations

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Pass by reference is much easier to use than pass by pointer but has some limitations. Pass by reference is only possible within a program. That means that separate programs that are not compiled together, such as one that you might write and the operating system, cannot share data through pass by reference.

C++ MEMORY

SIMPLE DATA

void func(int& p);

int main()
{

int a = 5; // step 1

func(a); // step 2
}

void func(int& p)
{

p = p + 1; // step 3
} // step 4

5 5 6 6

a a a a

0x12 0x12 0x12 0x12

step 1
define a

step 2
call func

step 3
run func

step 4
return

Time

p p

Presenter
Presentation Notes
As in the previous two sections, this explanation is based on an integer argument and parameter, but pass by reference behaves the same for all simple data types. The syntax used to implement pass by reference is similar to pass by value. The only place the syntax is modified is in the function prototype and in the function definition: The ampersand used in this context denotes pass by reference. Pass by reference is another, overloaded meaning for the ampersand, and is distinguished from the previous uses by context: the ampersand that implements pass by reference only appears in the variable definition associated with a function parameter.
Again, step 1 defines and initializes a variable named a; in the illustration, the definition allocates memory to hold the variable and stores the value 5 in that memory.
And again, Step 2 calls a function, to which it passes a single argument. But notice that unlike either pass by value or pass by pointer, no new memory is allocated. That distinction is important enough to stop and think about: the previous two passing techniques created a new local variable in the function. Pass by value passes a copy of the argument data to the new variable and pass by pointer passes the address of the argument data to the new variable.
But pass by reference does not create a new variable. Instead, the parameter temporarily refers to the same memory location as does the original argument. Pass by reference creates a temporary alias or new name for the original data.
Now, when the function increments the parameter p, p refers to the same memory location as variable a, and so a is incremented.
When the function ends, the name of variable p becomes unusable and variable a has been permanently changed.

STRUCTURED DATA

struct part
{ char type;

int id;
};

void func(part& p);

int main()
{

part a = { 'd', 10 };
func(a);

}

void func(part& p)
{

p.id = 1000;
}

‘d’
10

‘d’
10

‘d’
1000

‘d’
1000

a a a a

0x12 0x12 0x12 0x12

step 1
define a

step 2
call func

step 3
run func

step 4
return

Time

pp

Presenter
Presentation Notes
Finally, we explore pass by reference as it applies to structures and classes.
As before, we create a structure object named a and initialize it.
We call the function, with the structure a as the argument. Pass by reference makes the function parameter p refer to the same memory location as argument a.
The function uses the dot operator to select the id field, which is changed to 1000. When the function ends, the name p becomes unusable and the original structure a is permanently modified.
Like pass by pointer, pass by reference allows information to flow in both directions: into the function and out of the function. So, pass by reference is also an input/output mechanism.

	Pass By Reference
	Simple Data
	Structured Data

