
FUNCTIONS AND LINK ERRORS

Link errors are a problem with multifile programs

Delroy A. Brinkerhoff

Presenter
Presentation Notes
When we begin spreading programs over multiple files, we can inadvertently create link errors. This section explores the causes of these link errors, how to identify them, and the best practice for avoiding them.

KINDS OF ERRORS

• Syntax error

• Caused by an incorrect sequence of
programming elements

• Detected and reported by the compiler
component

• Linker error

• Usually caused by a function call that
doesn’t match a function definition

• Detected and reported by the linker

• Logical error

• Caused by an incorrect problem solution

• Detected and reported by . . . ?

• Runtime error

• Unanticipated or uncorrectable situation

• Program crashes

• Detected and reported by . . .?

Presenter
Presentation Notes
There are four kinds of errors that we need to be concerned with this semester: syntax, link, logical, and runtime. Syntax errors arise, as you would expect, when we violate the language’s syntax – that is, the sequence of symbols, keywords, and identifiers. The compiler component identifies and reports these errors. The error report includes the line number where the compiler identified the error. Furthermore, Visual Studio also provides a link in the output window – double clicking on the link will place the cursor at that location in the source code file. If the error is not on this line, then search backwards through the code – the error will never be below this point.

Programs with link errors pass the compiler component but fail at the last step, when the linker attempts to join together the separate object files created by the compiler component. The primary cause is usually a mismatch between a function definition and a function call. These errors are generally more difficult to find than are syntax errors.

Logical errors arise when our problem-solution is incorrect. These errors are much more difficult to detect and to locate. They may be found by customers, quality assurance engineers, or good software engineers who know enough to test their own code.

Runtime errors cause a program to crash when it runs. There are many causes for runtime errors – sometimes they are just a special case of a logical error. But runtime errors also happen when programmers fail to anticipate some situation in the program’s environment or when some situation that can’t be corrected takes place.

Programs with logical errors and runtime errors compile successfully, but programs with syntax errors and linker errors do not.

file1.cpp

void foo(int x, int y, int z)
{

cout << x << " " << y

<< " " << z << endl;

}

void foo(int x, int y);

int main()

{
foo(10, 20);

return 0;

}

file2.cpp

LINK ERROR
VARIATION 1

Presenter
Presentation Notes
Recall that when a program consists of multiple source code files, that the preprocessor and the compiler component process each source code file separately. In the example, file 1 contains a function definition, which compiles correctly. File 2 contains a function call. The compiler relies on the prototype to ensure that the function call is formed correctly. But notice that the there is a mismatch between the number of arguments in the function call and the prototype. Based on the incorrect prototype, the function call, and therefore all of file 2, compiles. But when the linker attempts to join the object files created from the two source code files, it is unable to find a function named foo with two arguments to which it can bind the call appearing in main.

DIAGNOSTICS 1

1>------ Build started: Project: LinkError, Configuration: Debug Win32 ------
1> file2.cpp
1> file2.obj : error LNK2019: unresolved external symbol [wrap]
"void __cdecl foo(int,int)" (?foo@@YAXHH@Z) referenced in function _main
1>E:\tmp\cs1410.2\LinkError\Debug\LinkError.exe : fatal error LNK1120: [wrap]
1 unresolved externals
========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========

Presenter
Presentation Notes
The resulting diagnostics appearing in the output window are more difficult to interpret and to use than diagnostics resulting from syntax errors. The first bit of useful information are the letters “LNK” appearing in the error message – don’t waste your time Googling for the error numbers – the “LNK” tells us that this is a linker error. Next, scan the next line for any useful information. The compiler has added information that is useful to the linker, but not so much for humans, and you need to filter out that noise. Three bits of information are useful:
The function causing the problem has a return type of void
The function is named foo and takes two integer arguments
The function was called from main
The linker can’t find a function matching those requirements. So, now ask yourself, what function did I mean to call? The answer to that question will help you to begin to solve the error with the function call.

file 1

void foo(int x, int y, int z)
{

cout << x << " " << y

<< " " << z << endl;

}

void Foo(int x, int y, int z);

int main()
{

Foo(10, 20, 30);
return 0;

}

file 2

LINK ERROR
VARIATION 2

Presenter
Presentation Notes
The second variation is similar to the first and the example begins with the same function defined in file1. The prototype at the top of file 2 is also incorrect but in a different way. This time the function has the correct number of arguments, but look at how the function name is spelled. C++ is a case sensitive language and so the function names foo (lower case F) and Foo (upper case F) are NOT the same name. Again, based on the incorrect prototype, file 2 will compile but the linker again is unable to link the two object files together.

DIAGNOSTICS 2

1>------ Rebuild All started: Project: LinkError, Configuration: Debug Win32 --

1> file2.cpp
1> file1.cpp
1> Generating Code...
1>file2.obj : error LNK2019: unresolved external symbol [wrap]
"void __cdecl Foo(int,int,int)" (?Foo@@YAXHHH@Z) referenced in function _main
1>E:\tmp\cs1410.2\LinkError\Debug\LinkError.exe : fatal error LNK1120: [wrap]
unresolved externals
========== Rebuild All: 0 succeeded, 1 failed, 0 skipped ==========

Presenter
Presentation Notes
The error diagnostics again contain the characters “LNK,” which tells us that we are dealing with a link error. And again, we need to filter out the noise created by the compiler component, leaving the three bits of useful information:
The function causing the problem has a return type of void
The function is named Foo (with a capital F) and takes three integer arguments
The function was called from main
The linker can’t find a function definition that matches these requirements – so, what function did you intend to call?

example.h

void foo(int x, int y, int z); #include "example.h"

int main()
{

foo(10, 20);
Foo(10, 20, 30);

return 0;
}

file2.cpp

THE SOLUTION

Presenter
Presentation Notes
To help minimize this problem, programmers typically place prototypes in header files. To reduce mismatches between a function definition and a prototype, header files should be written and maintained by the same engineer that writes and maintains the corresponding source code file. The programmers writing function calls, such as those in file 2 in the previous examples, include the header files, which contain the prototypes, rather than writing the prototypes themselves.

THE FINAL DIAGNOSTICS

• The link errors become syntax errors, which are easier to locate

• The header file is the one place where incorrect prototypes are corrected

• The caveat: A prototype error in the header file produces the same kind of
link errors

file2.cpp
file2.cpp(7): error C2660: 'foo': function does not take 2 arguments
file2.cpp(8): error C3861: 'Foo': identifier not found

Presenter
Presentation Notes
Now, when there is a mismatch between a function call and the function definition, the compiler component is able to catch the error based on the correct prototype. What we have just accomplished is changing a linker error into a syntax error, which is detected much sooner and is much easier to find. If a mismatch between a function definition and prototype does happen, there will still be one or more link errors, but the header file is the one and only place that we need to correct, which makes long-term maintenance much easier.

	Functions and Link Errors
	Kinds Of Errors
	Link Error�Variation 1
	Diagnostics 1
	Link Error�Variation 2
	Diagnostics 2
	The Solution
	The Final Diagnostics

