
THE SWAPPING PROBLEM

Version 3

Delroy A. Brinkerhoff

Presenter
Presentation Notes
We return to the swapping problem once again, but this time to demonstrate passing data into functions.

INITIAL STATE GOAL (SOLUTION) STATE

THE PROBLEM

Presenter
Presentation Notes
The problem begins with two variables, represented by two glasses, and our task is swapping the data or contents.

THE SOLUTION

Step 1 Step 2 Step 3

Presenter
Presentation Notes
With a temporary variable, our solution takes three steps or statements. Each step pours liquid from one glass to another. This process is the same as each statement copying data between variables in a computer program.

GENERAL SOLUTION

• T temp = x1; // step 1

• x1 = x2; // step 2

• x2 = temp; // step 3

EXAMPLE

PROGRAMMING THE SOLUTION

struct student
{

int id;
string name;
double gpa;

};

student temp = s2;
s2 = s1;
s1 = temp;

Presenter
Presentation Notes
Our general solution works with any data type if the type allows us to define a variable and supports the assignment operation. We replaced the general type with a structure in the last chapter but disallowed any pointer fields. Although we haven’t studied them yet, we could also use a class in place of the structure. Also, whether pointer fields work depends on how the assignment operator works. We’ll return to that problem later in the text.

CHOICES

• Pass-by-value

• Pass-by-pointer

• Pass-by-reference

PASSING FUNCTION ARGUMENTS

Presenter
Presentation Notes
If we want to write a swap function, a function that swaps the contents of two variables, we need to consider how to pass the data. As always, we have three choices: pass-by-value, pass-by-pointer, and pass-by-reference.

CHOICES

• Pass-by-value

• Pass-by-reference

• Pass-by-pointer

• Function must change two arguments

• Argument passing must be INOUT

• Pass-by-value: IN only

• Pass-by-reference: INOUT

• Pass-by-pointer: INOUT

REASONING

PASSING FUNCTION ARGUMENTS

Presenter
Presentation Notes
The proposed swap function must change two arguments. That means that we must pass using an INOUT technique. Pass-by-value is an IN only technique, so we must rule it out. But pass-by-reference and pass-by-pointer are both INOUT techniques and will work.

PASS-BY-REFERENCE

void swap(student& p1, student& p2)
{

student temp = p2;
p2 = p1;
p1 = temp;

}

student s1 = { 123, "dilbert", 3.0 };
student s2 = { 987, "alice", 4.0 };
swap(s1, s2);

p1
s1

p2
s2 temp

Presenter
Presentation Notes
We begin with pass-by-reference, which we implement by adding the ampersands to the function’s parameters. The function call is straightforward and doesn’t require any additional operators. The picture helps us understand how the function works. For the duration of the function call, the compiler makes the parameters p1 and p2 refer to the corresponding arguments s1 and s2. So, while the function is active, each object has two names: The arguments are defined in the calling scope and the parameters in the function’s scope. The assignment operation copies the contents of one object to another.

PASS-BY-REFERENCE: FAIL

void swap(student& p1, student& p2)
{

student& temp = p2;
p2 = p1;
p1 = temp;

}

student s1 = { 123, "dilbert", 3.0 };
student s2 = { 987, "alice", 4.0 };
swap(s1, s2);

p1
s1

temp
p2
s2

Presenter
Presentation Notes
Perhaps the most surprising thing about pass-by-reference is an easy mistake that makes it fail. Both function parameters are references, so it seems natural also to make the temporary variable a reference. The picture can help us understand why this doesn’t work.
At the beginning of the function, s1 and p1 refer to the same object because p1 is a reference variable. But the assignment operation in the first function statement doesn’t copy p2 to temp! Instead, temp refers to the object named p2 because temp is a reference variable. The second statement copies p1 to p2, but it also copies p1 to temp because p2 and temp refer to the same variable. When the third statement runs, p1 and temp store the same data, so the final statement isn’t useful.

PASS-BY-POINTER (1)

void swap(student* p1, student* p2)
{

student temp = *p2;
*p2 = *p1;
*p1 = temp;

}

student s1 = { 123, "dilbert", 3.0 };
student s2 = { 987, "alice", 4.0 };
swap(&s1, &s2);

dilbert alice

s1 s2

p1 p2

dilbert alice

s1 s2

p2 p1

Presenter
Presentation Notes
We can also implement the swap function using pass-by-pointer. Whenever we use pass-by-pointer, we must examine three program locations and verify the syntax. First, the parameters must be pointers defined with the asterisk. Second, the function must dereference each parameter when using it. And lastly, the function call must pass the address of each argument passed by pointer.
We again turn to pictures to help us understand why we need to dereference the pointers in the function’s body. The top picture illustrates the situation at the beginning of the function call. The parameters p1 and p2 point to the argument objects s1 and s2, respectively. After the three statements in the function’s body run, the pointers are swapped as desired, but s1 and s2 retain the same values as before the call. When the call ends, p1 and p2 go out of scope.

	The Swapping problem
	The Problem
	The Solution
	Programming the solution
	Passing Function arguments
	Passing Function arguments
	Pass-by-Reference
	Pass-by-Reference: Fail
	Pass-by-Pointer (1)

