
INITIALIZING ARRAYS

Static Initialization

When the array element values are known at compile time

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The fact that each array element is an individual variable implies that it's possible to initialize each array element individually, one at a time. This section introduces syntax that allows programmers to initialize array elements en bloc, that is to initialize all of the elements in an array at one time as a group. En bloc initialization is sometimes called static initialization because the value stored in the array must be known at compile time. (Sometimes the word "static" refers to some operation that takes place prior to or during program compilation, while the word "dynamic"refers to an operation that takes place while the program is running.)



INITIALIZING AUTOMATIC ARRAYS

• Pre-2015 ANSI Standard

• int scores[5] = { 0, 1, 2, 3, 4 };

• int scores[] = { 0, 1, 2, 3, 4 };

• int scores[5] = {};

• Post-2015 ANSI Standard

• int scores[5]{ 0, 1, 2, 3, 4 };

• int scores[]{ 0, 1, 2, 3, 4 };

• int scores[5]{};

Presenter Notes
Presentation Notes
There are two similar notations that may be used to initialize automatic arrays. The only difference between the two notations is the presence or absence of the =. The notation that includes the = dates back to the C programming language while the notation without the = is quite new, being recently introduced by the ANSI 2015 standard. The opening and closing braces, together with the comma-separated list of values appearing between them, form an "initializer list." All of the values appearing in the initializer list must be compile time constants. The last example in each list demonstrates a useful "trick" for quickly initializing all of the elements in an array to zero.



INITIALIZATION EXAMPLE

int month_length[12] =
{
 31, 28, 31, 30,
 31, 30, 31, 31,
 30, 31, 30, 31
};

int month_length[] =
{
 31, 28, 31, 30,
 31, 30, 31, 31,
 30, 31, 30, 31
};

Presenter Notes
Presentation Notes
The array definition on the left actually contains some redundant information. The size of the array is specified twice: first by the value appearing between the square brackets and second by the number of elements in the initializer list. When an array is defined as it is on the left, the number of elements in the initializer list must be less than or equal to the stated size of the array (the number of elements in the list may never be greater than the stated array size). If the number of elements in the initializer list is less than the array size, then the unmatched elements are automatically set to 0. The example array definition on the right demonstrates that it is possible to imply the size of the array with the number of elements in the initializer list (that is, the definition may omit the explicit size between square brackets).



INITIALIZING DYNAMIC ARRAYS

• Pre-2015 ANSI Standard

• Dynamic array could not be initialized en bloc

• Post-2015 ANSI Standard

• int* scores = new int[5]{ 0, 1, 2, 3, 4 };

• int* scores = new int[]{ 0, 1, 2, 3, 4 };

• int* scores = new int[5]{};

• int* scores = new int[size]{};

• int* scores = new int[size]{0, 1, 2, 3, 4};

Presenter Notes
Presentation Notes
Prior to the ANSI 2015 standard, dynamic arrays could not be initialized en bloc, but the 2015 standard introduces notation similar to that used by Java. Notice that the notation permits both constant and variable array sizes; however, having the size of the array implied by the number of values in the initializer list is not supported. The "trick" for quickly initializing all elements to zero may also be used with dynamic arrays.



TWO-DIMENSIONAL ARRAYS

int test_scores[5][4]=
{
 95, 98, 97, 96,
 79, 89, 79, 85,
 99, 98, 99, 99,
 90, 89, 83, 86,
 75, 72, 79, 69
};

int test_scores[][4]=
{
 95, 98, 97, 96,
 79, 89, 79, 85,
 99, 98, 99, 99,
 90, 89, 83, 86,
 75, 72, 79, 69
};

Presenter Notes
Presentation Notes
Static initialization notation may be extended to two-dimensional arrays. The sizes of the different dimensions may be specified in one of two ways. The sizes of both dimensions may be stated explicitly, or the size of the first dimension may be omitted. Only the size of the first dimension may be omitted, so when this notation is extended to three or more dimensions, the sizes of all dimension other than the first must be stated.


	Initializing Arrays
	Initializing Automatic Arrays
	Initialization Example
	Initializing Dynamic Arrays
	Two-Dimensional Arrays

