
RANDOM NUMBER GENERATORS
RNGS

More appropriately called

Pseudo-Random Number Generators

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Games, simulations, and software tests often use random number generators (RNGs). The first versions of the average program fill arrays with pseudo-random numbers. This video presents an overview of RNGs. It's not directly related to arrays, so you may skip it if you're uninterested or don't have time.

PSEUDO-RANDOM NUMBER
GENERATORS

• Correct computer programs are
deterministic

• Given the same input, they produce the
same output

Presenter Notes
Presentation Notes
Correct computer programs are deterministic, meaning that the sequence of program instructions is uniquely determined or decided by the program's input. Less formally, correct programs always produce the same output given the same input. This behavior implies that deterministic programs can't generate truly random values.

PSEUDO-RANDOM NUMBER
GENERATORS

• Correct computer programs are
deterministic

• Given the same input, they produce the
same output

• Software RNGS produce a long,
repeating cycle of numbers

• The numbers “look” random (they pass
some statistical tests of randomness)

R0 = f(R7)

R1 = f(R0)

R2 = f(R1)

R3 = f(R2)

R4 = f(R3)

R5 = f(R4)

R6 = f(R5)

R7 = f(R6)

Presenter Notes
Presentation Notes
So, while we often use the term "random-number generators," calling them "pseudo-random number generators" is more appropriate. These software machines produce long, repeating cycles of numbers. The numbers in the cycle "look" random because they pass some statistical randomness tests. Each sequence number is a function of the previous number.

USING PSEUDO-RANDOM SEQUENCES

• RNGS have very long cycles (i.e., a long
sequence before repeating)

• Programs typically use a small part of the
cycle (i.e., a short sub-sequence)

Presenter Notes
Presentation Notes
Random number generators produce long cycles – sequences of tens of thousands to millions of numbers – before the cycle repeats. Programs typically only use a short sub-sequence each time they run.

USING PSEUDO-RANDOM SEQUENCES

• RNGS have very long cycles (i.e., a long
sequence before repeating)

• Programs typically use a small part of the
cycle (i.e., a short sub-sequence)

• Programs start a sub-sequence with a
“seed” value

• The same seed always produces the same
sub-sequence

Ri = g(seedi)

Presenter Notes
Presentation Notes
Programs locate a starting point in the sequence by "seeding" the generator. A generator function calculates an initial pseudo-random number from the seed value. Seeding the generator with the same seed value causes it to produce the same number sequence, which is useful when programmers debug programs using "random" numbers.

USING PSEUDO-RANDOM SEQUENCES

• RNGS have very long cycles (i.e., a long
sequence before repeating)

• Programs typically use a small part of the
cycle (i.e., a short sub-sequence)

• Programs start a sub-sequence with a
“seed” value

• The same seed always produces the same
sub-sequence

• A different seed produces a different sub-
sequence

Rj = g(seedj)

Presenter Notes
Presentation Notes
Providing a different seed value selects a different sub-sequence of pseudo-random numbers.

SEEDING A RNG

• Programmers want a different random
sequence each time the program runs

• They need a source of unique seeds

Presenter Notes
Presentation Notes
Aside from debugging, programmers typically want programs to use a different sub-sequence of pseudo-random numbers each time they run. They achieve this behavior by providing a different seed value for each run. But where can they find a reliable source of unique seed values?

SEEDING A RNG

• Programmers want a different random
sequence each time the program runs

• They need a source of unique seeds

• The computer clock maintains the time
since the epoch

• Jan 1, 1970 (Unix, Linux, macOS)

• Jan 1, 1980 (Windows)

• Time is a monotonically increasing value

Presenter Notes
Presentation Notes
The computer's clock maintains the elapsed time since "the epoch" - the beginning of computer time. For Unix, Linux, and Apple systems, the epoch began on January 1, 1970, and for Windows, in 1980. Computer time is a monotonically increasing value, meaning that it doesn't change between clock "ticks" (the horizontal lines) and increases at each "tick" (the vertical lines), but it never decreases.

INHERITED C
RANDOM NUMBER GENERATOR

#include <stdlib.h>

#include <time.h>

srand((unsigned)time(nullptr));

for (int i = 0; i < 10; i++)

 numbers[i] = rand() % 100;

Presenter Notes
Presentation Notes
C++ inherits a simple random number generator from C. The standard library header file prototypes the rand and srand functions, and the time header prototypes the system call that gets the elapsed time since the epoch. Programs seed the generator once but may call the rand function many times, generating a pseudo-random number with each call. The rand function returns positive and negative numbers, so programmers typically narrow the generator's output with the mod operator. Although easy to use, this generator is not effective or recommended.

C++ RNGS AND DISTRIBUTIONS

#include <random>
#include <chrono>

default_random_engine
 rng((unsigned)(chrono::system_clock::now().time_since_epoch().count()));

for (int i = 0; i < 10; i++)
numbers[i] = rng();

uniform_int_distribution<int> range(1, 100);

for (int i = 0; i < 10; i++)
numbers[i] = range(rng);

Presenter Notes
Presentation Notes
C++ provides a more capable generator and related components as a set of classes. The illustrated example relies on syntax the text introduces later, so don't worry about the details. Two header files have the class specifications: The first has the generator and distribution classes, and the second has the time management classes.
The default_random_engine class implements a basic random number generator, and rng is an instance or object instantiated from it. Programs can generate numbers directly from the engine but usually constrain them with a distribution object.
Distributions control the frequency at which numbers appear in a generator's output. In a uniform distribution, numbers are equally likely to occur. The program instantiates a uniform_int_distribution object named range that produces pseudo-random numbers from 1 to 100. The parentheses form a function that returns the random values when called.

	Random Number Generators�RNGS
	Pseudo-Random Number Generators
	Pseudo-Random Number Generators
	Using Pseudo-Random Sequences
	Using Pseudo-Random Sequences
	Using Pseudo-Random Sequences
	Seeding A RNG
	Seeding A RNG
	Inherited C�Random Number Generator
	C++ RNGS and Distributions

