
STACKS

A Last In, First Out Data Structure

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Stacks are interesting and important data structures in their own right, and they can be implemented in many different ways. An implementation based on arrays is presented here as an example of using arrays.




STACK BEHAVIORS

push an element on the stack

pop an element off the stack

size – the number of elements on the stack

peek at the top element

Stack

push pop

Presenter Notes
Presentation Notes
A stack is said to be a last in, first out data structure (or LIFO). This just means that the last data value stored in the stack will be the first data value removed from it (additionally, that implies that the first value stored in the stack is the last value removed). All stacks support two basic operations:
The push operation stores new data on the top of the stack.
The pop operation removes and returns the value currently on top of the stack.
 
Various other operations may be supported but are not required. Our stack will support two optional operations: size will return the number of data values currently stored on the stack and peak will allow us to see the data value on the top of the stack without removing it.




ARRAY IMPLEMENTATION

• Based on an array and a stack pointer

• push

• st[sp++] = data; (sp must be < SIZE)

• pop

• return st[--sp]; (sp must be > 0)

• size

• return sp;

• peek

• return st[sp-1];

0
1
2
3

st
sp = 0

Presenter Notes
Presentation Notes
We implement the stack as an array named "st" and an index variable named "sp" (for stack pointer). We leave the size of the stack somewhat ambiguous for now, denoted only by the symbolic constant SIZE. All four operations are described simply in terms of the array and the stack pointer.
 
To understand how the stack operations work, it’s important to recall the difference between the pre- and post-increment and decrement operators. Whatever we use the post version we use the value in the variable first and then we increment or decrement the variable; when we use the pre version we increment or decrement first and then we use the new value of the variable.
 
So we begin with the stack pointer equal to 0, we use 0 as the index value into the array st, which stores the new data item as the zeroth element, and then we increment the stack pointer to 1. In this way, the stack pointer always points to an empty spot in the array where the next data item be placed. Also note that using this algorithm means that the stack pointer is also a count of the number of data values placed on the stack.
 
When we pop an element off the stack, we first decrement the stack pointer and then use that new value. So if the stack pointer is 1, we decrement the value to 0 and then return the value at the zeroth the location.
 
When implemented in this way, the size of the stack is simply the value currently stored in the stack pointer. If we want to examine the element on the top of the stack, we must index the array at the location one less than the stack pointer.
 
As we move to the next slide, please keep in mind this picture of an empty stack.




PUSHING DATA ONTO A STACK
st[sp++] = data;

A0
1
2
3

st

sp = 1
A
B

0
1
2
3

st

sp = 2

A
B
C

0
1
2
3

st

sp = 3

Presenter Notes
Presentation Notes
Assume for a moment that we are simply placing characters on the stack. Pushing an A on the stack results in something like the first picture, pushing a B on the stack gives us the middle picture, and pushing a C on the stack gives us the final picture. Keep this last picture in mind as we move to the next slide.




POPPING DATA OFF OF A STACK
return st[--sp];

0
1
2
3

st

sp = 2

A
B
C

0
1
2
3

st

sp = 1
A
B
C

0
1
2
3

st
sp = 0A

B
C

Presenter Notes
Presentation Notes
The pop operation begins by decrementing the stack pointer and then returns the element at the array location specified by the new stack pointer index. Notice that the data is not really (i.e., not physically) removed from the stack. In the final picture we say that the stack is empty because the stack pointer is 0, but the data has not been removed from the stack nor has it been erased from memory. Nevertheless, the array is logically empty.



	Stacks
	Stack Behaviors
	Array implementation
	Pushing data onto a Stack�st[sp++] = data;
	Popping Data off of a stack�return st[--sp];

