C-STRINGS

C-Style / Character Strings

Delroy A. Brinkerhoff

Presenter
Presentation Notes
C-strings are a primitive data type based on character arrays that are often manipulated as character pointers. In this video we will explore a number of ways to define and initialize C-strings while viewing some corresponding illustrations representing abstract representations of the C-strings in memory.

C-STRINGS

char sl1]]
char s2[]

C-Strings consist of a null-terminated character array

sl (H I [1]]o wlol|r d([\O
s2 (H I [1]]o wlol|r d([\O
— { 'H', lel’ 'l" 'l', 'Ol’] l, 'W', 'O', 'rl’

"Hello world";

'd',

I\Ol

b g

Presenter
Presentation Notes
C-strings can be defined as character arrays implemented as automatic variables on the stack where the compiler determines how much memory to allocate based on the data stored in the array. The contents of the C-string can be specified as a comma-separated sequence of characters listed between a pair of opening and closing braces. This is the same initializer list notation introduced to initialize structures. A C-string can also be initialized with a string constant or string literal.
Either way, the compiler allocates just enough memory to contain the initializing data plus one additional byte to store the null-termination character, which it automatically adds at the end of the array.

C-STRINGS, PART 2

C-Strings are often manipulated as a character pointer

s2 |H|le|[l]|l]o wlo|r|l|d
:
sd—» H|le |l |[]]o wlo|r |l |d
char s2[] = "Hello world";
char* s3 = s2;

const char* s4 = "Hello world";

Presenter
Presentation Notes
Character pointers are another common way to represent a C-string. It’s important to note that the pointer variable must point to memory that has been allocated to hold a C-string.
In the first example, s3 points to memory originally allocated for and assigned to s2. Following the assignment operation, both s2 and s3 point to the same string. Nevertheless, there is an important difference between s2 and s3: s2 is a constant and cannot point to any other data. On the other hand, s3 is a “normal” pointer variable whose contents can change, that is, it can point to other data.
Similarly, s4 points to constant memory and many contemporary compilers require the const keyword.

char* s5 =
char* s6 =
char s7[15]
char s8[15]

C-STRINGS, PART 3

new char/|

C-Strings may be shorter than the storing array

s5—» H|lel|l]|Il]o wlol|r \O
so—»{H|e |l ||l]|o wlo|r \O
s7|E|lx|a|lm|p]|!||e]|\O
s8 [E[{x|a|lm|p]| | |[e]|\O
new char[15] { 'H', 'e', '1', '1', 'o', 'w', 'o',
15] { "Hello world" };
VEV, 'X', Va|, lml, |p|, llV’ 'el };

{
{

"Example" };

Presenter
Presentation Notes
It’s also possible to create a C-string dynamically on the heap with the new operator.
Furthermore, all of the examples illustrated here demonstrate that it is possible to create a C-string that is shorter than the character array containing the string. The end of the string is marked with the null-termination character. The characters located between the null-terminator and the end of the array may contain any value, including random bit-patterns, but are ignored by all of the C-string functions.

UNINITIALIZED CHARACTER ARRAYS

Possible to create a character array without initializing it
Not a C-string yet: no null-termination character
Most C-string functions will fail
char s9[100];

char* sl10 = new char[100];

o A N R R

Presenter
Presentation Notes
It is, of course, possible to create a character array without initializing it – either as an automatic variable, for example, s9, or dynamically using a pointer and the new operator, for example s10. Uninitialized character arrays are not really C-strings yet because they lack a null-termination character. With a couple of exceptions, the C-string functions will fail if passed an uninitialized character array as an argument.

	C-Strings
	C-Strings
	C-Strings, Part 2
	C-Strings, Part 3
	Uninitialized Character Arrays

